997 resultados para Containers-grown plants
Resumo:
A toxicidade do alumínio (Al) é um dos fatores mais limitantes para a produtividade. Esta pesquisa foi realizada para avaliar a influência do Al, em solução nutritiva, na altura de plantas, no peso da matéria seca e nas alterações morfoanatômicas de raízes e folhas de milho (Zea mays L.). O experimento foi conduzido em casa de vegetação com tratamentos constituídos de cinco doses de Al (0; 25; 75; 150; e 300 µmol L-1) e seis repetições. As soluções foram constantemente aeradas e o pH foi ajustado a 4,3, inicialmente. A matéria seca da parte aérea e das raízes e a altura das plantas diminuíram significativamente com o aumento da concentração de Al. As raízes de plantas de milho cultivadas em soluções com Al tiveram seu crescimento inibido e apresentaram menos raízes laterais e desenvolvimento do sistema radicular inferior, em comparação com as das plantas-controle. As folhas das plantas crescidas em soluções que continham 75 e 300 µmol L-1 de Al não apresentaram muita diferença anatômica em relação às das plantas-controle. A bainha da folha das plantas exposta ao Al apresentou epiderme uniestratificada revestida por uma fina camada de cutícula e as células da epiderme e do córtex foram as que menos se desenvolveram. No feixe vascular, o metaxilema e protoxilema não tinham paredes secundárias, e o diâmetro de ambos foi muito menor quando comparado com os das plantas-controle.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Although Coffea arabica species has its origin in the African understories, there is great resistance on the part of the Brazilian producers for growing this species under agroforestry systems as they fear that shading reduces production. This study aimed at evaluating some vegetative traits and the productivity of organically grown coffee (Coffea arabica L.) cultivars under shaded and unshaded systems. Twelve treatments consisting of two cultivation systems (shaded and unshaded) and six coffee cultivars were arranged in randomized blocks with four replicates, in a split-plot scheme. Shading was provided by banana (Musa sp.) and coral bean plants (Erythrinaverna). Shading delayed fruit maturation. Late maturation cultivars, such as the Icatu and the Obatã, matured early in both cultivation systems, while medium and early maturation cultivars presented late maturation. Cultivation in the shaded system increased the leaf area and the number of lower branches, decreased the number of productive nodes per branch, and increased the distance between the nodes and the number of leaves present in the branches. Cultivation in the unshaded system presented greater number of plants with branch blight in relation to plants grown in the shade. The productivity of the cultivars was not different, at 30.0 processed bags per hectare in the shaded system, and 25.8 processed bags per hectare in the unshaded system. The most productive cultivars in the shaded system were the Tupi, the Obatã, and the Catuaí, while no differences between cultivars were obtained in the unshaded system.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We evaluated the growth and development of the medicinal species Pothomorphe umbellata ( L.) Miq. under different shade levels ( full sun and 30, 50, and 70 % shade, marked as I(100), I(70), I(50), and I(30), respectively) and their effects on gas exchange and activities of antioxidant enzymes. Photosynthetically active radiation varied from 1 254 mu mol m(-2) s(-1) at I(100) to 285 mu mol m(-2) s(-1) at I(30). Stomatal conductance, net photosynthetic rate, and relative chlorophyll (Chl) content were maximal in I(70) plants. Plants grown under I(100) produced leaves with lower Chl content and signs of chlorosis and necrosis. These symptoms indicated Chl degradation induced by the generation of reactive oxygen species. Stress related antioxidant enzyme activities ( Mn-SOD, Fe-SOD, and Cu/Zn-SOD) were highest in I(100) plants, whereas catalase activity was the lowest. Hence P. umbellata is a shade species ( sciophyte), a feature that should be considered in reforestation programs or in field plantings for production of medicinal constituents.
Resumo:
Coffea canephora plants (clone INCAPER-99) were submitted to low N (LN) or high N (HN) applications and two watering regimes (daily irrigation and irrigation every 5 days for a month). Although water potential was not altered significantly by N, HN plants showed higher relative water content than did LN plants under water deficit. Only HN plants exhibited some ability for osmotic adjustment. Plants from both N treatments increased their cell wall rigidity under drought, with a more pronounced augmentation in HN plants. In well-watered plants, carbon assimilation rate increased with increasing N while stomatal conductance did not respond to N supply. Under drought conditions, carbon assimilation decreased by 68-80% compared to well-watered plants, whereas stomatal conductance and transpiration rate declined by 35% irrespective of the N applications. Stable carbon isotope analysis, combined with leaf gas exchange measurements, indicated that regardless of the watering treatments, N increased the long-term water use efficiency through changes in carbon assimilation with little or no effect on stomatal behaviour.
Resumo:
We compared tolerance to soil drought of two field-grown clones of Coffea canephora (clone 46, drought-sensitive; and clone 120, drought-tolerant). Under irrigation, there were no marked differences between the clones in water relation parameters, gas exchange and total leaf area. Under rainfed conditions, clone 46 showed osmotic adjustment and increased tissue rigidity. These adjustments, however, were incapable of preventing substantial decreases in xylem pressure potential. By contrast, clone 120 did not exhibit osmotic adjustment, but was able to increase tissue elasticity and to maintain xylem pressure potentials to a greater extent than clone 46 (despite having twice the total leaf area of this clone). Stomatal conductance was lowered by drought in clone 120 but not in clone 46. Carbon assimilation per unit leaf area in both clones remained unaffected under stress. Long-term water use efficiency (WUE), as estimated through carbon isotope discrimination, was consistently greater in clone 120 than in clone 46. Because of these traits, clone 120 was better able to postpone dehydration and to maintain whole-tree photosynthesis. It is proposed that these features should decisively contribute to buffer its productivity in drought-prone areas. © 2002 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
The present work was carried out at the Faculdade de Ciências Agronômicas - UNESP, Botucatu, SP. The purpose of the study was to evaluate the physiological and biochemical behavior of sweet pepper (Capsicum annuum L.) plants under different soil water availability conditions and the efficiency of the peroxidase (EC. 1.11.1.7) activity as an indicator of water stress in plants. Sweet pepper plants were grown for 230 days after transplanting of seedlings. The experiment was arranged in a completely randomized experimental design with 4 treatments, two irrigation managements (50 and 1500 kPa) and two soil surface managements (presence or absence of black polyethylene covering), and six replications. Physiological activities, such as stomatal transpiration and resistance to water vapor diffusion, were evaluated, as well as biochemical activities, such as peroxidase activity and total soluble protein in foliar tissues. It was observed that soil water availability may lead to physiological and biochemical alterations in plants. Successive water stress cycles may promote the development of characteristics responsible for improving the plant tolerance to periods of low water availability. The peroxidase enzyme activity showed to be an efficient indicator of water stress in sweet pepper plants.
Resumo:
The objective of this study was to determine the influence of five different water levels on the crop development of Calla. The crop parameters evaluated were leaf area and evapotranspiration. The study was conducted in glass greenhouse with 50% of sunlight reduction. The plants were grown in PVC pots with 150 mm diameter, which were filled with substrate. The plant tubers weighed from 10 g to 12 g. The pots were placed within containers, under water level constant automatically.. The table water levels used were 10, 17, 24, 31 and 38 cm. Nine evaluations during the growth cycle checked the growth development. The evaporation varied from 26.89 to 46.14 L.plant-1 for 38 and 10 cm water levels, respectively and leaf area per plant showed 1011.6 to 2016.3 for the same levels. The substrate water was more available in the treatment 24 cm, with more restrictions in the upper and lower treatments. There was positive correlation between leaf area and evapotranspiration at the final of the culture.
Resumo:
In mature and young leaves of sunflower (Helianthus annuus L. cv. Catissol-01) plants grown in the greenhouse, photosynthetic rate, stomatal conductance, and transpiration rate declined during water stress independently of leaf age and recovered after 24-h rehydration. The intercellular CO 2 concentration, chlorophyll (Chl) content, and photochemical activity were not affected by water stress. However, non-photochemical quenching increased in mature stressed leaves. Rehydration recovered the levels of non-photochemical quenching and increased the F v/F m in young leaves. Drought did not alter the total Chl content. However, the accumulation of proline under drought was dependent on leaf age: higher content of proline was found in young leaves. After 24 h of rehydration the content of proline returned to the same contents as in control plants.
Resumo:
The purpose of the study was to evaluate the physiological and biochemical behavior of sweet pepper (Capsicum annuum L.) plants under different soil water availability conditions and the efficiency of the peroxidase (EC. 1.11. 1.7) activity as an indicator of water stress in plants. The experiment was carried out at the Faculdade de Ciências Agronômicas UNESP, Botucatu, SP. Sweet pepper plants were grown for 230 days after transplanting of seedlings and arranged in a completely randomized experimental design with 4 treatments, two irrigation managements (50 and 1500 kPa) and two soil surface managements (presence or absence of black polyethylene covering), and six replications. Physiological activities, such as stomatal transpiration and resistance to water vapor diffusion, were evaluated as well as biochemical activities, such as peroxidase activity and total soluble protein in foliar tissues. It was observed that soil water availability may lead to physiological and biochemical alterations in plants. Successive water stress cycles may promote the development of characteristics responsible for improving plant tolerance to periods of low water availability. The peroxidase enzyme activity showed to be an efficient indicator of water stress in sweet pepper plants.