822 resultados para Conductive nanoparticles


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rheumatoid arthritis (RA) is the most common inflammatory rheumatic disease, affecting almost 1% of the world population. Although the cause of RA remains unknown, the complex interaction between immune mediators (cytokines and effector cells) is responsible for the joint damage that begins at the synovial membrane. Activated macrophages are critical in the pathogenesis of RA and have been shown to specifically express a receptor for the vitamin folic acid (FA), folate receptor (FR). This particular receptor allows internalization of FA-coupled cargo. In this review we will address the potential of nanoparticles as an effective drug delivery system for therapies that will directly target activated macrophages. Special attention will be given to stealth degree of the nanoparticles as a strategy to avoid clearance by macrophages of the mononuclear phagocytic system (MPS). This review summarizes the application of FA-target nanoparticles as drug delivery systems for RA and proposes prospective future directions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[Exert] This chapter is focused on the activity of silver nanoparticles (SN) as an antifungal agent against Candida albicans and Candida glabrata biofilms, which are involved in oral candidosis. A discussion focusing on the influence of the stabilizing agent, diameter of SN on its antibiofilm activity, influence of chemical stability of SN on Candida biofilms, the effect of SN against adhered cells and biofilms, the effect on extracellular matrix composition and structure of Candida biofilms, the combination of SN with conventional antifungal drugs, and the incorporation of SN into denture acrylic resin is incorporated in the present chapter. Because of the resistance of Candida biofilms to conventional drugs and the positive effect of SN against them, these nanoparticles can be used as an alternative antifungal agent (...).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[Exert] Since the discovery that polyacetylene could be doped to the metallic state more than 3 decades ago, an ever-growing body of a multidisciplinary approach to material design, synthesis, and system integration has been evidenced. The present chapter will primarily review the emerging field of intrinsically conducting polymer and conductive polymer blends, with polyaniline and polypyrrole as the major representatives of conducting polymers. This survey will also address some of the potential areas for applications of such conductive polymer blends. Also, current results concerning the chemical polymerization of conducting polymers on bacterial nanocellulose (BNC) will be presented, including brief remarks on the rationale for the use of conductive BNC blends. This will be followed by a discussion on their properties and potential applications (...).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanopartikel, BaSO4, Mikroemulsion, Fällung, Modellierung

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoparticles (NPs) are being used or explored for the development of biomedical applications in diagnosis and therapy, including imaging and drug delivery. Therefore, reliable tools are needed to study the behavior of NPs in biological environment, in particular the transport of NPs across biological barriers, including the blood-brain tumor barrier (BBTB), a challenging question. Previous studies have addressed the translocation of NPs of various compositions across cell layers, mostly using only one type of cells. Using a coculture model of the human BBTB, consisting in human cerebral endothelial cells preloaded with ultrasmall superparamagnetic iron oxide nanoparticles (USPIO NPs) and unloaded human glioblastoma cells grown on each side of newly developed ultrathin permeable silicon nitride supports as a model of the human BBTB, we demonstrate for the first time the transfer of USPIO NPs from human brain-derived endothelial cells to glioblastoma cells. The reduced thickness of the permeable mechanical support compares better than commercially available polymeric supports to the thickness of the basement membrane of the cerebral vascular system. These results are the first report supporting the possibility that USPIO NPs could be directly transferred from endothelial cells to glioblastoma cells across a BBTB. Thus, the use of such ultrathin porous supports provides a new in vitro approach to study the delivery of nanotherapeutics to brain cancers. Our results also suggest a novel possibility for nanoparticles to deliver therapeutics to the brain using endothelial to neural cells transfer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water-dispersible gold nanoparticles functionalized with paramagnetic gadolinium have been fully characterized, and the NMRD profiles show very high relaxivities up to 1.5 T. Characterization using TEM images and dynamic light scattering indicate a particle size distribution from 2 to 15 nm. The gold cores of the nanoparticles do not contribute significantly to the overall magnetic moment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Characterisation of nanoparticles (NP) based on size distribution, surface area, reactivity, and aggregation status of nanoparticles (NP) are of prime importance because they are usually closely related to toxicity. To date, most of the toxicity studies are quite time and money consuming. In the present study we report the oxidative properties of a panel of various NP (four Carbonaceous, nine Metal oxides, and one Metal as showed in Table 1) assessed with an acellular reactivity test measuring dithiothreitol (DTT) consumption (Sauvain et al. 2008). Such a test allows determining the ability of NP to catalyse the transfer of electrons from DTT to oxygen. DTT is used as a reductant species. NP were diluted and sonicated in Tween 80® to a final concentration of 50 g/mL. Printex 90 was diluted 5 times before doing the DTT assay because of its expected higher activity. Suspensions were characterised for NP size distribution by Nanoparticle Tracking Analysis (Nanosight©). Fresh solutions were incubated with DTT (100 μM). Aliquots were taken every 5 min and the remaining DTT was determined by reacting it with DTNB. The reaction rate was determined for NP suspensions and blank in parallel. The mean Brownian size distribution of NP agglomerates in suspension is presented in Table 1. D values correspond to 10th, and 50th percentiles of the particle diameters. All the NP agglomerated in Tween 80 with a D50 size corresponding to at least twice their primary size, except for Al2O3 (300 nm). The DTT test showed Printex 90 sample to be the most reactive one, followed by Diesel EPA and Nanotubes. Most of the metallic NP was nonresponding toward this test, except for NiO and Ag which reacted positively and ZnO which presented the most negative reactivity (see Figure 1). This last observation suggests that electron transfer between DTT and oxygen is hindered in presence of ZnO compared with the blank. Such "stabilization" could be attributable to ZnO dissolution and complexation between Zn2+ ions and DTT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantification is a major problem when using histology to study the influence of ecological factors on tree structure. This paper presents a method to prepare and to analyse transverse sections of cambial zone and of conductive phloem in bark samples. The following paper (II) presents the automated measurement procedure. Part I here describes and discusses the preparation method, and the influence of tree age on the observed structure. Highly contrasted images of samples extracted at breast height during dormancy were analysed with an automatic image analyser. Between three young (38 years) and three old (147 years) trees, age-related differences were identified by size and shape parameters, at both cell and tissue levels. In the cambial zone, older trees had larger and more rectangular fusiform initials. In the phloem, sieve tubes were also larger, but their shape did not change and the area for sap conduction was similar in both categories. Nevertheless, alterations were limited, and demanded statistical analysis to be identified and ascertained. The physiological implications of the structural changes are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding how nanoparticles may affect immune responses is an essential prerequisite to developing novel clinical applications. To investigate nanoparticle-dependent outcomes on immune responses, dendritic cells (DCs) were treated with model biomedical poly(vinylalcohol)-coated super-paramagnetic iron oxide nanoparticles (PVA-SPIONs). PVA-SPIONs uptake by human monocyte-derived DCs (MDDCs) was analyzed by flow cytometry (FACS) and advanced imaging techniques. Viability, activation, function, and stimulatory capacity of MDDCs were assessed by FACS and an in vitro CD4(+) T cell assay. PVA-SPION uptake was dose-dependent, decreased by lipopolysaccharide (LPS)-induced MDDC maturation at higher particle concentrations, and was inhibited by cytochalasin D pre-treatment. PVA-SPIONs did not alter surface marker expression (CD80, CD83, CD86, myeloid/plasmacytoid DC markers) or antigen-uptake, but decreased the capacity of MDDCs to process antigen, stimulate CD4(+) T cells, and induce cytokines. The decreased antigen processing and CD4(+) T cell stimulation capability of MDDCs following PVA-SPION treatment suggests that MDDCs may revert to a more functionally immature state following particle exposure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work aimed to develop a new therapeutic approach to increase the efficacy of 5-fluorouracil (5-FU) in the treatment of advanced or recurrent colon cancer. 5-FU-loaded biodegradable poly(ε-caprolactone) nanoparticles (PCL NPs) were combined with the cytotoxic suicide gene E (combined therapy). The SW480 human cancer cell line was used to assay the combined therapeutic strategy. This cell line was established from a primary adenocarcinoma of the colon and is characterized by an intrinsically high resistance to apoptosis that correlates with its resistance to 5-FU. 5-FU was absorbed into the matrix of the PCL NPs during synthesis using the interfacial polymer disposition method. The antitumor activity of gene E from the phage ϕX174 was tested by generating a stable clone (SW480/12/E). In addition, the localization of E protein and its activity in mitochondria were analyzed. We found that the incorporation of 5-FU into PCL NPs (which show no cytotoxicity alone), significantly improved the drug's anticancer activity, reducing the proliferation rate of colon cancer cells by up to 40-fold when compared with the nonincorporated drug alone. Furthermore, E gene expression sensitized colon cancer cells to the cytotoxic action of the 5-FU-based nanomedicine. Our findings demonstrate that despite the inherent resistance of SW480 to apoptosis, E gene activity is mediated by an apoptotic phenomenon that includes modulation of caspase-9 and caspase-3 expression and intense mitochondrial damage. Finally, a strongly synergistic antiproliferative effect was observed in colon cancer cells when E gene expression was combined with the activity of the 5-FU-loaded PCL NPs, thereby indicating the potential therapeutic value of the combined therapy.