827 resultados para Concept-based Retrieval
Resumo:
In the modern and dynamic construction environment it is important to access information in a fast and efficient manner in order to improve the decision making processes for construction managers. This capability is, in most cases, straightforward with today’s technologies for data types with an inherent structure that resides primarily on established database structures like estimating and scheduling software. However, previous research has demonstrated that a significant percentage of construction data is stored in semi-structured or unstructured data formats (text, images, etc.) and that manually locating and identifying such data is a very hard and time-consuming task. This paper focuses on construction site image data and presents a novel image retrieval model that interfaces with established construction data management structures. This model is designed to retrieve images from related objects in project models or construction databases using location, date, and material information (extracted from the image content with pattern recognition techniques).
Resumo:
Some WWW image engines allow the user to form a query in terms of text keywords. To build the image index, keywords are extracted heuristically from HTML documents containing each image, and/or from the image URL and file headers. Unfortunately, text-based image engines have merely retro-fitted standard SQL database query methods, and it is difficult to include images cues within such a framework. On the other hand, visual statistics (e.g., color histograms) are often insufficient for helping users find desired images in a vast WWW index. By truly unifying textual and visual statistics, one would expect to get better results than either used separately. In this paper, we propose an approach that allows the combination of visual statistics with textual statistics in the vector space representation commonly used in query by image content systems. Text statistics are captured in vector form using latent semantic indexing (LSI). The LSI index for an HTML document is then associated with each of the images contained therein. Visual statistics (e.g., color, orientedness) are also computed for each image. The LSI and visual statistic vectors are then combined into a single index vector that can be used for content-based search of the resulting image database. By using an integrated approach, we are able to take advantage of possible statistical couplings between the topic of the document (latent semantic content) and the contents of images (visual statistics). This allows improved performance in conducting content-based search. This approach has been implemented in a WWW image search engine prototype.
Resumo:
RATIONALE & OBJECTIVES: The food multimix (FFM)concept states that limited food resources can be combined using scientific knowledge to meet nutrient needs of vulnerable groups at low cost utilizing the ‘nutrient strengths’ of individual or candidate foods in composite recipes within a cultural context. METHODS: The method employed the food-to-food approach for recipe development using traditional food ingredients. Recipes were subjected to proximate and micronutrient analysis and optimized to meet at tleast 40% of recommended daily intakes. End products including breads, porridge and soup were developed. RESULTS: FMM products were employed in a feeding trial among 120 healthy pregnant women in Gauteng, South Africa resulting in improvements in serum iron levels from baseline values of 14.59 (=/-7.67) umol/L and 14.02 (=/-8.13) umol/L for control and intervention groups (p=0.71), to 16.03 (=/-5.67) umol/L and 18.66 (=/-9.41) umol/L (p=0.19). The increases from baseline to post-intervention were however statistically significant within groups. Similarly Mean Cell Volume values improved from baseline as well as serum ferritin and transferritin levels. CONCLUSION: The FMM concept has potential value in feeding programs for vulnerable groups including pregnant and lactating mothers.
Resumo:
This paper is concerned with several of the most important aspects of Competence-Based Learning (CBL): course authoring, assignments, and categorization of learning content. The latter is part of the so-called Bologna Process (BP) and can effectively be supported by integrating knowledge resources like, e.g., standardized skill and competence taxonomies into the target implementation approach, aiming at making effective use of an open integration architecture while fostering the interoperability of hybrid knowledge-based e-learning solutions. Modern scenarios ask for interoperable software solutions to seamlessly integrate existing e-learning infrastructures and legacy tools with innovative technologies while being cognitively efficient to handle. In this way, prospective users are enabled to use them without learning overheads. At the same time, methods of Learning Design (LD) in combination with CBL are getting more and more important for production and maintenance of easy to facilitate solutions. We present our approach of developing a competence-based course-authoring and assignment support software. It is bridging the gaps between contemporary Learning Management Systems (LMS) and established legacy learning infrastructures by embedding existing resources via Learning Tools Interoperability (LTI). Furthermore, the underlying conceptual architecture for this integration approach will be explained. In addition, a competence management structure based on knowledge technologies supporting standardized skill and competence taxonomies will be introduced. The overall goal is to develop a software solution which will not only flawlessly merge into a legacy platform and several other learning environments, but also remain intuitively usable. As a proof of concept, the so-called platform independent conceptual architecture model will be validated by a concrete use case scenario.
Resumo:
In this paper, a parallel-matching processor architecture with early jump-out (EJO) control is proposed to carry out high-speed biometric fingerprint database retrieval. The processor performs the fingerprint retrieval by using minutia point matching. An EJO method is applied to the proposed architecture to speed up the large database retrieval. The processor is implemented on a Xilinx Virtex-E, and occupies 6,825 slices and runs at up to 65 MHz. The software/hardware co-simulation benchmark with a database of 10,000 fingerprints verifies that the matching speed can achieve the rate of up to 1.22 million fingerprints per second. EJO results in about a 22% gain in computing efficiency.
Resumo:
A retrieval model describes the transformation of a query into a set of documents. The question is: what drives this transformation? For semantic information retrieval type of models this transformation is driven by the content and structure of the semantic models. In this case, Knowledge Organization Systems (KOSs) are the semantic models that encode the meaning employed for monolingual and cross-language retrieval. The focus of this research is the relationship between these meanings’ representations and their role and potential in augmenting existing retrieval models effectiveness. The proposed approach is unique in explicitly interpreting a semantic reference as a pointer to a concept in the semantic model that activates all its linked neighboring concepts. It is in fact the formalization of the information retrieval model and the integration of knowledge resources from the Linguistic Linked Open Data cloud that is distinctive from other approaches. The preprocessing of the semantic model using Formal Concept Analysis enables the extraction of conceptual spaces (formal contexts)that are based on sub-graphs from the original structure of the semantic model. The types of conceptual spaces built in this case are limited by the KOSs structural relations relevant to retrieval: exact match, broader, narrower, and related. They capture the definitional and relational aspects of the concepts in the semantic model. Also, each formal context is assigned an operational role in the flow of processes of the retrieval system enabling a clear path towards the implementations of monolingual and cross-lingual systems. By following this model’s theoretical description in constructing a retrieval system, evaluation results have shown statistically significant results in both monolingual and bilingual settings when no methods for query expansion were used. The test suite was run on the Cross-Language Evaluation Forum Domain Specific 2004-2006 collection with additional extensions to match the specifics of this model.
Resumo:
Wine Tourism is gaining importance in today’s world and more destinations and establishments have been arising. After understanding the importance of this economic activity and the factors it must have to succeed, a new project was conceived for Central Alentejo taking into account its potential. This project is an example of how to take advantage of Wine Tourism in wine regions that are underexplored, such as Aldeias de Montoito, the village near Redondo to which a Business Plan will be created, explaining the strategies to pursue in order to have a successful Wine Tourism destination.