913 resultados para Computer vision industry


Relevância:

90.00% 90.00%

Publicador:

Resumo:

A more natural, intuitive, user-friendly, and less intrusive Human–Computer interface for controlling an application by executing hand gestures is presented. For this purpose, a robust vision-based hand-gesture recognition system has been developed, and a new database has been created to test it. The system is divided into three stages: detection, tracking, and recognition. The detection stage searches in every frame of a video sequence potential hand poses using a binary Support Vector Machine classifier and Local Binary Patterns as feature vectors. These detections are employed as input of a tracker to generate a spatio-temporal trajectory of hand poses. Finally, the recognition stage segments a spatio-temporal volume of data using the obtained trajectories, and compute a video descriptor called Volumetric Spatiograms of Local Binary Patterns (VS-LBP), which is delivered to a bank of SVM classifiers to perform the gesture recognition. The VS-LBP is a novel video descriptor that constitutes one of the most important contributions of the paper, which is able to provide much richer spatio-temporal information than other existing approaches in the state of the art with a manageable computational cost. Excellent results have been obtained outperforming other approaches of the state of the art.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

There have been two main approaches to feature detection in human and computer vision - luminance-based and energy-based. Bars and edges might arise from peaks of luminance and luminance gradient respectively, or bars and edges might be found at peaks of local energy, where local phases are aligned across spatial frequency. This basic issue of definition is important because it guides more detailed models and interpretations of early vision. Which approach better describes the perceived positions of elements in a 3-element contour-alignment task? We used the class of 1-D images defined by Morrone and Burr in which the amplitude spectrum is that of a (partially blurred) square wave and Fourier components in a given image have a common phase. Observers judged whether the centre element (eg ±458 phase) was to the left or right of the flanking pair (eg 0º phase). Lateral offset of the centre element was varied to find the point of subjective alignment from the fitted psychometric function. This point shifted systematically to the left or right according to the sign of the centre phase, increasing with the degree of blur. These shifts were well predicted by the location of luminance peaks and other derivative-based features, but not by energy peaks which (by design) predicted no shift at all. These results on contour alignment agree well with earlier ones from a more explicit feature-marking task, and strongly suggest that human vision does not use local energy peaks to locate basic first-order features. [Supported by the Wellcome Trust (ref: 056093)]

Relevância:

90.00% 90.00%

Publicador:

Resumo:

[EN]In this paper, a basic conceptual architecture aimed at the design of Computer Vision System is qualitatively described. The proposed architecture addresses the design of vision systems in a modular fashion using modules with three distinct units or components: a processing network or diagnostics unit, a control unit and a communications unit. The control of the system at the modules level is designed based on a Discrete Events Model. This basic methodology has been used to design a realtime active vision system for detection, tracking and recognition of people. It is made up of three functional modules aimed at the detection, tracking, recognition of moving individuals plus a supervision module.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

[EN]This paper describes an Active Vision System whose design assumes a distinction between fast or reactive and slow or background processes. Fast processes need to operate in cycles with critical timeouts that may affect system stability. While slow processes, though necessary, do not compromise system stability if its execution is delayed. Based on this simple taxonomy, a control architecture has been proposed and a prototype implemented that is able to track people in real-time with a robotic head while trying to identify the target. In this system, the tracking module is considered as the reactive part of the system while person identification is considered a background task.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

[EN]Active Vision Systems can be considered as dynamical systems which close the loop around artificial visual perception, controlling camera parameters, motion and also controlling processing to simplify, accelerate and do more robust visual perception. Research and Development in Active Vision Systems [Aloi87], [Bajc88] is a main area of interest in Computer Vision, mainly by its potential application in different scenarios where real-time performance is needed such as robot navigation, surveillance, visual inspection, among many others. Several systems have been developed during last years using robotic-heads for this purpose...

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Computer games are significant since they embody our youngsters’ engagement with contemporary culture, including both play and education. These games rely heavily on visuals, systems of sign and expression based on concepts and principles of Art and Architecture. We are researching a new genre of computer games, ‘Educational Immersive Environments’ (EIEs) to provide educational materials suitable for the school classroom. Close collaboration with subject teachers is necessary, but we feel a specific need to engage with the practicing artist, the art theoretician and historian. Our EIEs are loaded with multimedia (but especially visual) signs which act to direct the learner and provide the ‘game-play’ experience forming semiotic systems. We suggest the hypothesis that computer games are a space of deconstruction and reconstruction (DeRe): When players enter the game their physical world and their culture is torn apart; they move in a semiotic system which serves to reconstruct an alternate reality where disbelief is suspended. The semiotic system draws heavily on visuals which direct the players’ interactions and produce motivating gameplay. These can establish a reconstructed culture and emerging game narrative. We have recently tested our hypothesis and have used this in developing design principles for computer game designers. Yet there are outstanding issues concerning the nature of the visuals used in computer games, and so questions for contemporary artists. Currently, the computer game industry employs artists in a ‘classical’ role in production of concept sketches, storyboards and 3D content. But this is based on a specification from the client which restricts the artist in intellectual freedom. Our DeRe hypothesis places the artist at the generative centre, to inform the game designer how art may inform our DeRe semiotic spaces. This must of course begin with the artists’ understanding of DeRe in this time when our ‘identities are becoming increasingly fractured, networked, virtualized and distributed’ We hope to persuade artists to engage with the medium of computer game technology to explore these issues. In particular, we pose several questions to the artist: (i) How can particular ‘periods’ in art history be used to inform the design of computer games? (ii) How can specific artistic elements or devices be used to design ‘signs’ to guide the player through the game? (iii) How can visual material be integrated with other semiotic strata such as text and audio?

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Finding rare events in multidimensional data is an important detection problem that has applications in many fields, such as risk estimation in insurance industry, finance, flood prediction, medical diagnosis, quality assurance, security, or safety in transportation. The occurrence of such anomalies is so infrequent that there is usually not enough training data to learn an accurate statistical model of the anomaly class. In some cases, such events may have never been observed, so the only information that is available is a set of normal samples and an assumed pairwise similarity function. Such metric may only be known up to a certain number of unspecified parameters, which would either need to be learned from training data, or fixed by a domain expert. Sometimes, the anomalous condition may be formulated algebraically, such as a measure exceeding a predefined threshold, but nuisance variables may complicate the estimation of such a measure. Change detection methods used in time series analysis are not easily extendable to the multidimensional case, where discontinuities are not localized to a single point. On the other hand, in higher dimensions, data exhibits more complex interdependencies, and there is redundancy that could be exploited to adaptively model the normal data. In the first part of this dissertation, we review the theoretical framework for anomaly detection in images and previous anomaly detection work done in the context of crack detection and detection of anomalous components in railway tracks. In the second part, we propose new anomaly detection algorithms. The fact that curvilinear discontinuities in images are sparse with respect to the frame of shearlets, allows us to pose this anomaly detection problem as basis pursuit optimization. Therefore, we pose the problem of detecting curvilinear anomalies in noisy textured images as a blind source separation problem under sparsity constraints, and propose an iterative shrinkage algorithm to solve it. Taking advantage of the parallel nature of this algorithm, we describe how this method can be accelerated using graphical processing units (GPU). Then, we propose a new method for finding defective components on railway tracks using cameras mounted on a train. We describe how to extract features and use a combination of classifiers to solve this problem. Then, we scale anomaly detection to bigger datasets with complex interdependencies. We show that the anomaly detection problem naturally fits in the multitask learning framework. The first task consists of learning a compact representation of the good samples, while the second task consists of learning the anomaly detector. Using deep convolutional neural networks, we show that it is possible to train a deep model with a limited number of anomalous examples. In sequential detection problems, the presence of time-variant nuisance parameters affect the detection performance. In the last part of this dissertation, we present a method for adaptively estimating the threshold of sequential detectors using Extreme Value Theory on a Bayesian framework. Finally, conclusions on the results obtained are provided, followed by a discussion of possible future work.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Visual inputs to artificial and biological visual systems are often quantized: cameras accumulate photons from the visual world, and the brain receives action potentials from visual sensory neurons. Collecting more information quanta leads to a longer acquisition time and better performance. In many visual tasks, collecting a small number of quanta is sufficient to solve the task well. The ability to determine the right number of quanta is pivotal in situations where visual information is costly to obtain, such as photon-starved or time-critical environments. In these situations, conventional vision systems that always collect a fixed and large amount of information are infeasible. I develop a framework that judiciously determines the number of information quanta to observe based on the cost of observation and the requirement for accuracy. The framework implements the optimal speed versus accuracy tradeoff when two assumptions are met, namely that the task is fully specified probabilistically and constant over time. I also extend the framework to address scenarios that violate the assumptions. I deploy the framework to three recognition tasks: visual search (where both assumptions are satisfied), scotopic visual recognition (where the model is not specified), and visual discrimination with unknown stimulus onset (where the model is dynamic over time). Scotopic classification experiments suggest that the framework leads to dramatic improvement in photon-efficiency compared to conventional computer vision algorithms. Human psychophysics experiments confirmed that the framework provides a parsimonious and versatile explanation for human behavior under time pressure in both static and dynamic environments.