995 resultados para Computer tomography angiography
Resumo:
The sediments of Hydrate Ridge/Cascadia margin contain extensive amounts of gas hydrate. A total of 57 sediment samples including gas hydrate were preserved in liquid nitrogen and have been imaged using computerized tomography to visualize hydrate distribution and shape. The analysis gives evidence that gas hydrate in vein and veinlet structures is the predominant shape in the deeper gas hydrate stability zone with dipping angles from 30° to 90°(vertical).
Resumo:
A presente pesquisa avaliou a angulação mésio-distal e a distalização dos primeiros e dos segundos molares superiores permanentes em pacientes tratados com o aparelho Forsus® em conjunto com o aparelho ortodôntico fixo. A amostra foi composta por 44 teleradiografias, (22 do lado direito e 22 do lado esquerdo), obtidas por meio de 11 tomografias computadorizadas, de 11 pacientes, realizadas em dois tempos: antes (T1) e após (T2) a instalação do aparelho Forsus®, tratados na clínica de Pós-Graduação em Odontologia, área de Ortodontia, da Universidade Metodista de São Paulo. Após a obtenção dos cortes tipo telerradiografia, foi realizada a marcação dos pontos, linhas e planos, e realizada a mensuração das variáveis de interesse. Para avaliação do espaço para os terceiros molares superiores, utilizou-se uma linha referencial (linha PTVR), demarcada a partir do ponto PTV, perpendicular ao plano de Frankfurt. O espaço avaliado compreendeu entre a Linha PTVR, até a face distal do primeiro molar e do segundo superior permanente. Para avaliar o longo eixo dos primeiros e segundos molares superiores, mensurou-se o ângulo formado entre esses dentes e o plano palatino. Para auxílio das mensurações, foi utilizado o software Radiocef Studio 2. Na análise estatística usou-se o teste t pareado. Concluiu-se que houve distalização e aumento da angulação distal dos primeiros e segundos molares superiores, sendo que nos segundos molares a distalização e angulação distal da coroa ocorreram em menor quantidade; os efeitos do lado direito e esquerdo foram semelhantes; pode-se também constatar que ocorreu uma redução na probabilidade de erupção dos terceiros molares superiores.
Resumo:
The primary goal of this dissertation is to develop point-based rigid and non-rigid image registration methods that have better accuracy than existing methods. We first present point-based PoIRe, which provides the framework for point-based global rigid registrations. It allows a choice of different search strategies including (a) branch-and-bound, (b) probabilistic hill-climbing, and (c) a novel hybrid method that takes advantage of the best characteristics of the other two methods. We use a robust similarity measure that is insensitive to noise, which is often introduced during feature extraction. We show the robustness of PoIRe using it to register images obtained with an electronic portal imaging device (EPID), which have large amounts of scatter and low contrast. To evaluate PoIRe we used (a) simulated images and (b) images with fiducial markers; PoIRe was extensively tested with 2D EPID images and images generated by 3D Computer Tomography (CT) and Magnetic Resonance (MR) images. PoIRe was also evaluated using benchmark data sets from the blind retrospective evaluation project (RIRE). We show that PoIRe is better than existing methods such as Iterative Closest Point (ICP) and methods based on mutual information. We also present a novel point-based local non-rigid shape registration algorithm. We extend the robust similarity measure used in PoIRe to non-rigid registrations adapting it to a free form deformation (FFD) model and making it robust to local minima, which is a drawback common to existing non-rigid point-based methods. For non-rigid registrations we show that it performs better than existing methods and that is less sensitive to starting conditions. We test our non-rigid registration method using available benchmark data sets for shape registration. Finally, we also explore the extraction of features invariant to changes in perspective and illumination, and explore how they can help improve the accuracy of multi-modal registration. For multimodal registration of EPID-DRR images we present a method based on a local descriptor defined by a vector of complex responses to a circular Gabor filter.
Resumo:
The primary goal of this dissertation is to develop point-based rigid and non-rigid image registration methods that have better accuracy than existing methods. We first present point-based PoIRe, which provides the framework for point-based global rigid registrations. It allows a choice of different search strategies including (a) branch-and-bound, (b) probabilistic hill-climbing, and (c) a novel hybrid method that takes advantage of the best characteristics of the other two methods. We use a robust similarity measure that is insensitive to noise, which is often introduced during feature extraction. We show the robustness of PoIRe using it to register images obtained with an electronic portal imaging device (EPID), which have large amounts of scatter and low contrast. To evaluate PoIRe we used (a) simulated images and (b) images with fiducial markers; PoIRe was extensively tested with 2D EPID images and images generated by 3D Computer Tomography (CT) and Magnetic Resonance (MR) images. PoIRe was also evaluated using benchmark data sets from the blind retrospective evaluation project (RIRE). We show that PoIRe is better than existing methods such as Iterative Closest Point (ICP) and methods based on mutual information. We also present a novel point-based local non-rigid shape registration algorithm. We extend the robust similarity measure used in PoIRe to non-rigid registrations adapting it to a free form deformation (FFD) model and making it robust to local minima, which is a drawback common to existing non-rigid point-based methods. For non-rigid registrations we show that it performs better than existing methods and that is less sensitive to starting conditions. We test our non-rigid registration method using available benchmark data sets for shape registration. Finally, we also explore the extraction of features invariant to changes in perspective and illumination, and explore how they can help improve the accuracy of multi-modal registration. For multimodal registration of EPID-DRR images we present a method based on a local descriptor defined by a vector of complex responses to a circular Gabor filter.
Resumo:
Human cadavers have long been used to teach human anatomy and are increasingly used in other disciplines. Different embalming techniques have been reported in the literature; however there is no clear consensus on the opinion of anatomists on the utility of embalmed cadavers for the teaching of anatomy. To this end, we aimed to survey British and Irish anatomy teachers to report their opinions on different preservation methods for the teaching of anatomy. In this project eight human cadavers were embalmed using formalin, Genelyn, Thiel and Imperial College London- Soft Preserving (ICL-SP) techniques to compare different characteristics of these four techniques. The results of this thesis show that anatomy teachers consider hard-fixed cadavers not to be the most accurate teaching model in comparison to the human body, although it still serves as a useful teaching method (Chapter 2). In addition, our findings confirm that joints of cadavers embalmed using ICL-SP solution faithfully mimics joints of an unembalmed cadaver compared to the other techniques (Chapter 3). Embalming a human body prevents the deterioration in the quality of images and our findings highlight that the influence of the embalming solutions varied with the radiological modality used (Chapter 4). The method developed as part of this thesis enables anatomists and forensic scientists to quantify the decomposition rate of an embalmed human cadaver (Chapter 5). Formalin embalming solution showed the strongest antimicrobial abilities followed by Thiel, Genelyn and finally by ICL-SP (Chapter 6). The overarching viewpoint of this set of studies show that it is inaccurate to state that one embalming technique is ultimately the best. The value of each technique differs based on the requirement of the particular education or research area. Hence we highlight how different embalming techniques may be better suited to certain fields of study.
Resumo:
This study presents aggradation rates supplemented for the first time by carbonate accumulation rates from Mediterranean cold-water coral sites considering three different regional and geomorphological settings: (i) a cold-water coral ridge (eastern Melilla coral province, Alboran Sea), (ii) a cold-water coral rubble talus deposit at the base of a submarine cliff (Urania Bank, Strait of Sicily) and (iii) a cold-water coral deposit rooted on a predefined topographic high overgrown by cold-water corals (Santa Maria di Leuca coral province, Ionian Sea). The mean aggradation rates of the respective cold-water coral deposits vary between 10 and 530 cm kyr?1 and the mean carbonate accumulation rates range between 8 and 396 g cm?2 kyr?1 with a maximum of 503 g cm?2 kyr?1 reached in the eastern Melilla coral province. Compared to other deep-water depositional environments the Mediterranean cold-water coral sites reveal significantly higher carbonate accumulation rates that were even in the range of the highest productive shallow-water Mediterranean carbonate factories (e.g. Cladocora caespitosa coral reefs). Focusing exclusively on cold-water coral occurrences, the carbonate accumulation rates of the Mediterranean cold-water coral sites are in the lower range of those obtained for the prolific Norwegian coral occurrences, but exhibit much higher rates than the cold-water coral mounds off Ireland. This study clearly indicates that cold-water corals have the potential to act as important carbonate factories and regional carbonate sinks within the Mediterranean Sea. Moreover, the data highlight the potential of cold-water corals to store carbonate with rates in the range of tropical shallow-water reefs. In order to evaluate the contribution of the cold-water coral carbonate factory to the regional or global carbonate/carbon cycle, an improved understanding of the temporal and spatial variability in aggradation and carbonate accumulation rates and areal estimates of the respective regions is needed.
Resumo:
Background: Among other causes the long-term result of hip prostheses in dogs is determined by aseptic loosening. A prevention of prosthesis complications can be achieved by an optimization of the tribological system which finally results in improved implant duration. In this context a computerized model for the calculation of hip joint loadings during different motions would be of benefit. In a first step in the development of such an inverse dynamic multi-body simulation (MBS-) model we here present the setup of a canine hind limb model applicable for the calculation of ground reaction forces. Methods: The anatomical geometries of the MBS-model have been established using computer tomography- (CT-) and magnetic resonance imaging- (MRI-) data. The CT-data were collected from the pelvis, femora, tibiae and pads of a mixed-breed adult dog. Geometric information about 22 muscles of the pelvic extremity of 4 mixed-breed adult dogs was determined using MRI. Kinematic and kinetic data obtained by motion analysis of a clinically healthy dog during a gait cycle (1 m/s) on an instrumented treadmill were used to drive the model in the multi-body simulation. Results and Discussion: As a result the vertical ground reaction forces (z-direction) calculated by the MBS-system show a maximum deviation of 1.75%BW for the left and 4.65%BW for the right hind limb from the treadmill measurements. The calculated peak ground reaction forces in z- and y-direction were found to be comparable to the treadmill measurements, whereas the curve characteristics of the forces in y-direction were not in complete alignment. Conclusion: In conclusion, it could be demonstrated that the developed MBS-model is suitable for simulating ground reaction forces of dogs during walking. In forthcoming investigations the model will be developed further for the calculation of forces and moments acting on the hip joint during different movements, which can be of help in context with the in silico development and testing of hip prostheses.