886 resultados para Computer networks.


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Advances in silicon technology have been a key development in the realisation of many telecommunication and signal processing systems. In many cases, the development of application-specific digital signal processing (DSP) chips is the most cost-effective solution and provides the highest performance. Advances made in computer-aided design (CAD) tools and design methodologies now allow designers to develop complex chips within months or even weeks. This paper gives an insight into the challenges and design methodologies of implementing advanced highperformance chips for DSP. In particular, the paper reviews some of the techniques used to develop circuit architectures from high-level descriptions and the tools which are then used to realise silicon layout.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Traditional static analysis fails to auto-parallelize programs with a complex control and data flow. Furthermore, thread-level parallelism in such programs is often restricted to pipeline parallelism, which can be hard to discover by a programmer. In this paper we propose a tool that, based on profiling information, helps the programmer to discover parallelism. The programmer hand-picks the code transformations from among the proposed candidates which are then applied by automatic code transformation techniques.

This paper contributes to the literature by presenting a profiling tool for discovering thread-level parallelism. We track dependencies at the whole-data structure level rather than at the element level or byte level in order to limit the profiling overhead. We perform a thorough analysis of the needs and costs of this technique. Furthermore, we present and validate the belief that programs with complex control and data flow contain significant amounts of exploitable coarse-grain pipeline parallelism in the program’s outer loops. This observation validates our approach to whole-data structure dependencies. As state-of-the-art compilers focus on loops iterating over data structure members, this observation also explains why our approach finds coarse-grain pipeline parallelism in cases that have remained out of reach for state-of-the-art compilers. In cases where traditional compilation techniques do find parallelism, our approach allows to discover higher degrees of parallelism, allowing a 40% speedup over traditional compilation techniques. Moreover, we demonstrate real speedups on multiple hardware platforms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As a result of resource limitations, state in branch predictors is frequently shared between uncorrelated branches. This interference can significantly limit prediction accuracy. In current predictor designs, the branches sharing prediction information are determined by their branch addresses and thus branch groups are arbitrarily chosen during compilation. This feasibility study explores a more analytic and systematic approach to classify branches into clusters with similar behavioral characteristics. We present several ways to incorporate this cluster information as an additional information source in branch predictors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The techniques and technologies currently being investigated to detect weapons and contraband concealed on persons under clothing are reviewed. The basic phenomenology of the atmosphere and materials that must be understood in order to realize such a system are discussed. The component issues and architectural designs needed to realize systems are outlined. Some conclusions with respect to further technology developments are presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A cyberwar exists between malware writers and antimalware researchers. At this war's heart rages a weapons race that originated in the 80s with the first computer virus. Obfuscation is one of the latest strategies to camouflage the telltale signs of malware, undermine antimalware software, and thwart malware analysis. Malware writers use packers, polymorphic techniques, and metamorphic techniques to evade intrusion detection systems. The need exists for new antimalware approaches that focus on what malware is doing rather than how it's doing it.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Autonomic management can be used to improve the QoS provided by parallel/distributed applications. We discuss behavioural skeletons introduced in earlier work: rather than relying on programmer ability to design “from scratch” efficient autonomic policies, we encapsulate general autonomic controller features into algorithmic skeletons. Then we leave to the programmer the duty of specifying the parameters needed to specialise the skeletons to the needs of the particular application at hand. This results in the programmer having the ability to fast prototype and tune distributed/parallel applications with non-trivial autonomic management capabilities. We discuss how behavioural skeletons have been implemented in the framework of GCM(the Grid ComponentModel developed within the CoreGRID NoE and currently being implemented within the GridCOMP STREP project). We present results evaluating the overhead introduced by autonomic management activities as well as the overall behaviour of the skeletons. We also present results achieved with a long running application subject to autonomic management and dynamically adapting to changing features of the target architecture.
Overall the results demonstrate both the feasibility of implementing autonomic control via behavioural skeletons and the effectiveness of our sample behavioural skeletons in managing the “functional replication” pattern(s).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mixture of Gaussians (MoG) modelling [13] is a popular approach to background subtraction in video sequences. Although the algorithm shows good empirical performance, it lacks theoretical justification. In this paper, we give a justification for it from an online stochastic expectation maximization (EM) viewpoint and extend it to a general framework of regularized online classification EM for MoG with guaranteed convergence. By choosing a special regularization function, l1 norm, we derived a new set of updating equations for l1 regularized online MoG. It is shown empirically that l1 regularized online MoG converge faster than the original online MoG .

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introducing automation into a managed environment includes significant initial overhead and abstraction, creating a disconnect between the administrator and the system. In order to facilitate the transition to automated management, this paper proposes an approach whereby automation increases gradually, gathering data from the task deployment process. This stored data is analysed to determine the task outcome status and can then be used for comparison against future deployments of the same task and alerting the administrator to deviations from the expected outcome. Using a machinelearning
approach, the automation tool can learn from the administrator's reaction to task failures and eventually react to faults autonomously.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a novel method of audio-visual feature-level fusion for person identification where both the speech and facial modalities may be corrupted, and there is a lack of prior knowledge about the corruption. Furthermore, we assume there are limited amount of training data for each modality (e.g., a short training speech segment and a single training facial image for each person). A new multimodal feature representation and a modified cosine similarity are introduced to combine and compare bimodal features with limited training data, as well as vastly differing data rates and feature sizes. Optimal feature selection and multicondition training are used to reduce the mismatch between training and testing, thereby making the system robust to unknown bimodal corruption. Experiments have been carried out on a bimodal dataset created from the SPIDRE speaker recognition database and AR face recognition database with variable noise corruption of speech and occlusion in the face images. The system's speaker identification performance on the SPIDRE database, and facial identification performance on the AR database, is comparable with the literature. Combining both modalities using the new method of multimodal fusion leads to significantly improved accuracy over the unimodal systems, even when both modalities have been corrupted. The new method also shows improved identification accuracy compared with the bimodal systems based on multicondition model training or missing-feature decoding alone.