939 resultados para Computational music theory
Resumo:
This thesis introduces elements of a theory of design activity and a computational framework for developing design systems. The theory stresses the opportunistic nature of designing and the complementary roles of focus and distraction, the interdependence of evaluation and generation, the multiplicity of ways of seeing over the history of a design session versus the exclusivity of a given way of seeing over an arbitrarily short period, and the incommensurability of criteria used to evaluate a design. The thesis argues for a principle based rather than rule based approach to designing documents. The Discursive Generator is presented as a computational framework for implementing specific design systems, and a simple system for arranging blocks according to a set of formal principles is developed by way of illustration. Both shape grammars and constraint based systems are used to contrast current trends in design automation with the discursive approach advocated in the thesis. The Discursive Generator is shown to have some important properties lacking in other types of systems, such as dynamism, robustness and the ability to deal with partial designs. When studied in terms of a search metaphor, the Discursive Generator is shown to exhibit behavior which is radically different from some traditional search techniques, and to avoid some of the well-known difficulties associated with them.
Resumo:
This report describes a computational system with which phonologists may describe a natural language in terms of autosegmental phonology, currently the most advanced theory pertaining to the sound systems of human languages. This system allows linguists to easily test autosegmental hypotheses against a large corpus of data. The system was designed primarily with tonal systems in mind, but also provides support for tree or feature matrix representation of phonemes (as in The Sound Pattern of English), as well as syllable structures and other aspects of phonological theory. Underspecification is allowed, and trees may be specified before, during, and after rule application. The association convention is automatically applied, and other principles such as the conjunctivity condition are supported. The method of representation was designed such that rules are designated in as close a fashion as possible to the existing conventions of autosegmental theory while adhering to a textual constraint for maximum portability.
Resumo:
Computational Intelligence and Feature Selection provides a high level audience with both the background and fundamental ideas behind feature selection with an emphasis on those techniques based on rough and fuzzy sets, including their hybridizations. It introduces set theory, fuzzy set theory, rough set theory, and fuzzy-rough set theory, and illustrates the power and efficacy of the feature selections described through the use of real-world applications and worked examples. Program files implementing major algorithms covered, together with the necessary instructions and datasets, are available on the Web.
Resumo:
This project investigates how religious music, invested with symbolic and cultural meaning, provided African Americans in border city churches with a way to negotiate conflict, assert individual values, and establish a collective identity in the post- emancipation era. In order to focus on the encounter between former slaves and free Blacks, the dissertation examines black churches that received large numbers of southern migrants during and after the Civil War. Primarily a work of history, the study also employs insights and conceptual frameworks from other disciplines including anthropology and ritual studies, African American studies, aesthetic theory, and musicology. It is a work of historical reconstruction in the tradition of scholarship that some have called "lived religion." Chapter 1 introduces the dissertation topic and explains how it contributes to scholarship. Chapter 2 examines social and religious conditions African Americans faced in Baltimore, MD, Philadelphia, PA, and Washington, DC to show why the Black Church played a key role in African Americans' adjustment to post-emancipation life. Chapter 3 compares religious slave music and free black church music to identify differences and continuities between them, as well as their functions in religious settings. Chapters 4, 5, and 6 present case studies on Bethel African Methodist Episcopal Church (Baltimore), Zoar Methodist Episcopal Church (Philadelphia), and St. Luke’s Protestant Episcopal Church (Washington, DC), respectively. Informed by fresh archival materials, the dissertation shows how each congregation used its musical life to uphold values like education and community, to come to terms with a shared experience, and to confront or avert authority when cultural priorities were threatened. By arguing over musical choices or performance practices, or agreeing on mutually appealing musical forms like the gospel songs of the Sunday school movement, African Americans forged lively faith communities and distinctive cultures in otherwise adverse environments. The study concludes that religious music was a crucial form of African American discourse and expression in the post-emancipation era. In the Black Church, it nurtured an atmosphere of exchange, gave structure and voice to conflict, helped create a public sphere, and upheld the values of black people.
Resumo:
A key goal of computational neuroscience is to link brain mechanisms to behavioral functions. The present article describes recent progress towards explaining how laminar neocortical circuits give rise to biological intelligence. These circuits embody two new and revolutionary computational paradigms: Complementary Computing and Laminar Computing. Circuit properties include a novel synthesis of feedforward and feedback processing, of digital and analog processing, and of pre-attentive and attentive processing. This synthesis clarifies the appeal of Bayesian approaches but has a far greater predictive range that naturally extends to self-organizing processes. Examples from vision and cognition are summarized. A LAMINART architecture unifies properties of visual development, learning, perceptual grouping, attention, and 3D vision. A key modeling theme is that the mechanisms which enable development and learning to occur in a stable way imply properties of adult behavior. It is noted how higher-order attentional constraints can influence multiple cortical regions, and how spatial and object attention work together to learn view-invariant object categories. In particular, a form-fitting spatial attentional shroud can allow an emerging view-invariant object category to remain active while multiple view categories are associated with it during sequences of saccadic eye movements. Finally, the chapter summarizes recent work on the LIST PARSE model of cognitive information processing by the laminar circuits of prefrontal cortex. LIST PARSE models the short-term storage of event sequences in working memory, their unitization through learning into sequence, or list, chunks, and their read-out in planned sequential performance that is under volitional control. LIST PARSE provides a laminar embodiment of Item and Order working memories, also called Competitive Queuing models, that have been supported by both psychophysical and neurobiological data. These examples show how variations of a common laminar cortical design can embody properties of visual and cognitive intelligence that seem, at least on the surface, to be mechanistically unrelated.
Resumo:
In this work, the properties of strained tetrahedrally bonded materials are explored theoretically, with special focus on group-III nitrides. In order to do so, a multiscale approach is taken: accurate quantitative calculations of material properties are carried out in a quantum first-principles frame, for small systems. These properties are then extrapolated and empirical methods are employed to make predictions for larger systems, such as alloys or nanostructures. We focus our attention on elasticity and electric polarization in semiconductors. These quantities serve as input for the calculation of the optoelectronic properties of these systems. Regarding the methods employed, our first-principles calculations use highly- accurate density functional theory (DFT) within both standard Kohn-Sham and generalized (hybrid functional) Kohn-Sham approaches. We have developed our own empirical methods, including valence force field (VFF) and a point-dipole model for the calculation of local polarization and local polarization potential. Our local polarization model gives insight for the first time to local fluctuations of the electric polarization at an atomistic level. At the continuum level, we have studied composition-engineering optimization of nitride nanostructures for built-in electrostatic field reduction, and have developed a highly efficient hybrid analytical-numerical staggered-grid computational implementation of continuum elasticity theory, that is used to treat larger systems, such as quantum dots.
Resumo:
The wonder of the last century has been the rapid development in technology. One of the sectors that it has touched immensely is the electronic industry. There has been exponential development in the field and scientists are pushing new horizons. There is an increased dependence in technology for every individual from different strata in the society. Atomic Layer Deposition (ALD) is a unique technique for growing thin films. It is widely used in the semiconductor industry. Films as thin as few nanometers can be deposited using this technique. Although this process has been explored for a variety of oxides, sulphides and nitrides, a proper method for deposition of many metals is missing. Metals are often used in the semiconductor industry and hence are of significant importance. A deficiency in understanding the basic chemistry at the nanoscale for possible reactions has delayed the improvement in metal ALD. In this thesis, we study the intrinsic chemistry involved for Cu ALD. This work reports computational study using Density Functional Theory as implemented in TURBOMOLE program. Both the gas phase and surface reactions are studied in most of the cases. The merits and demerits of a promising transmetallation reaction have been evaluated at the beginning of the study. Further improvements in the structure of precursors and coreagent have been proposed. This has led to the proposal of metallocenes as co-reagents and Cu(I) carbene compounds as new set of precursors. A three step process for Cu ALD that generates ligand free Cu layer after every ALD pulse has also been studied. Although the chemistry has been studied under the umbrella of Cu ALD the basic principles hold true for ALD of other metals (e.g. Co, Ni, Fe ) and also for other branches of science like thin film deposition other than ALD, electrochemical reactions, etc.
Resumo:
This PhD thesis concerns the computational modeling of the electronic and atomic structure of point defects in technologically relevant materials. Identifying the atomistic origin of defects observed in the electrical characteristics of electronic devices has been a long-term goal of first-principles methods. First principles simulations are performed in this thesis, consisting of density functional theory (DFT) supplemented with many body perturbation theory (MBPT) methods, of native defects in bulk and slab models of In0.53Ga0.47As. The latter consist of (100) - oriented surfaces passivated with A12O3. Our results indicate that the experimentally extracted midgap interface state density (Dit) peaks are not the result of defects directly at the semiconductor/oxide interface, but originate from defects in a more bulk-like chemical environment. This conclusion is reached by considering the energy of charge transition levels for defects at the interface as a function of distance from the oxide. Our work provides insight into the types of defects responsible for the observed departure from ideal electrical behaviour in III-V metal-oxidesemiconductor (MOS) capacitors. In addition, the formation energetics and electron scattering properties of point defects in carbon nanotubes (CNTs) are studied using DFT in conjunction with Green’s function based techniques. The latter are applied to evaluate the low-temperature, low-bias Landauer conductance spectrum from which mesoscopic transport properties such as the elastic mean free path and localization length of technologically relevant CNT sizes can be estimated from computationally tractable CNT models. Our calculations show that at CNT diameters pertinent to interconnect applications, the 555777 divacancy defect results in increased scattering and hence higher electrical resistance for electron transport near the Fermi level.
Resumo:
Instrumental music education is provided as an extra-curricular activity on a fee-paying basis by a small number of Education and Training Boards, formerly Vocational Education Committees (ETB/VECs) through specialist instrumental Music Services. Although all citizens’ taxes fund the public music provision, participation in instrumental music during school-going years is predominantly accessed by middle class families. A series of semistructured interviews sought to access the perceptions and beliefs of instrumental music education practitioners (N=14) in seven publicly-funded music services in Ireland. Canonical dispositions were interrogated and emergent themes were coded and analysed in a process of Grounded theory. The study draws on Foucault’s conception of discourse as a lens with which to map professional practices, and utilises Bourdieu’s analysis of the reproduction of social advantage to examine cultural assumptions, which may serve to privilege middle-class cultural choice to the exclusion of other social groups. Study findings show that within the Music Services, aesthetic and pedagogic discourses of the 19th century Conservatory system exert a hegemonic influence over policy and practice. An enduring ‘examination culture’ located within the Western art music tradition determines pedagogy, musical genre, and assessment procedures. Ideologies of musical taste and value reinforce the more tangible boundaries of fee-payment and restricted availability as barriers to access. Practitioners are aware of a status duality whereby instrumental teachers working as visiting specialists in primary schools experience a conflict between specialist and generalist educational aims. Nevertheless, study participants consistently advocated siting the point of access to instrumental music education in the primary schools as the most equitable means of access to instrumental music education. This study addresses a ‘knowledge gap’ in the sociology of music education in Ireland. It provides a framework for rethinking instrumental music education as equitable in-school musical participation. The conclusions of the study suggest starting-points for further educational research and may provide key ‘prompts’ for curriculum planning.
Resumo:
Copper is the main interconnect material in microelectronic devices, and a 2 nm-thick continuous Cu film seed layer needs to be deposited to produce microelectronic devices with the smallest features and more functionality. Atomic layer deposition (ALD) is the most suitable method to deposit such thin films. However, the reaction mechanism and the surface chemistry of copper ALD remain unclear, which is deterring the development of better precursors and design of new ALD processes. In this thesis, we study the surface chemistries during ALD of copper by means of density functional theory (DFT). To understand the effect of temperature and pressure on the composition of copper with substrates, we used ab initio atomistic thermodynamics to obtain phase diagram of the Cu(111)/SiO2(0001) interface. We found that the interfacial oxide Cu2O phases prefer high oxygen pressure and low temperature while the silicide phases are stable at low oxygen pressure and high temperature for Cu/SiO2 interface, which is in good agreement with experimental observations. Understanding the precursor adsorption on surfaces is important for understanding the surface chemistry and reaction mechanism of the Cu ALD process. Focusing on two common Cu ALD precursors, Cu(dmap)2 and Cu(acac)2, we studied the precursor adsorption on Cu surfaces by means of van der Waals (vdW) inclusive DFT methods. We found that the adsorption energies and adsorption geometries are dependent on the adsorption sites and on the method used to include vdW in the DFT calculation. Both precursor molecules are partially decomposed and the Cu cations are partially reduced in their chemisorbed structure. It is found that clean cleavage of the ligand−metal bond is one of the requirements for selecting precursors for ALD of metals. 2 Bonding between surface and an atom in the ligand which is not coordinated with the Cu may result in impurities in the thin film. To have insight into the reaction mechanism of a full ALD cycle of Cu ALD, we proposed reaction pathways based on activation energies and reaction energies for a range of surface reactions between Cu(dmap)2 and Et2Zn. The butane formation and desorption steps are found to be extremely exothermic, explaining the ALD reaction scheme of original experimental work. Endothermic ligand diffusion and re-ordering steps may result in residual dmap ligands blocking surface sites at the end of the Et2Zn pulse, and in residual Zn being reduced and incorporated as an impurity. This may lead to very slow growth rate, as was the case in the experimental work. By investigating the reduction of CuO to metallic Cu, we elucidated the role of the reducing agent in indirect ALD of Cu. We found that CuO bulk is protected from reduction during vacuum annealing by the CuO surface and that H2 is required in order to reduce that surface, which shows that the strength of reducing agent is important to obtain fully reduced metal thin films during indirect ALD processes. Overall, in this thesis, we studied the surface chemistries and reaction mechanisms of Cu ALD processes and the nucleation of Cu to form a thin film.
Resumo:
Determining how information flows along anatomical brain pathways is a fundamental requirement for understanding how animals perceive their environments, learn, and behave. Attempts to reveal such neural information flow have been made using linear computational methods, but neural interactions are known to be nonlinear. Here, we demonstrate that a dynamic Bayesian network (DBN) inference algorithm we originally developed to infer nonlinear transcriptional regulatory networks from gene expression data collected with microarrays is also successful at inferring nonlinear neural information flow networks from electrophysiology data collected with microelectrode arrays. The inferred networks we recover from the songbird auditory pathway are correctly restricted to a subset of known anatomical paths, are consistent with timing of the system, and reveal both the importance of reciprocal feedback in auditory processing and greater information flow to higher-order auditory areas when birds hear natural as opposed to synthetic sounds. A linear method applied to the same data incorrectly produces networks with information flow to non-neural tissue and over paths known not to exist. To our knowledge, this study represents the first biologically validated demonstration of an algorithm to successfully infer neural information flow networks.
Resumo:
© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.A key component in calculations of exchange and correlation energies is the Coulomb operator, which requires the evaluation of two-electron integrals. For localized basis sets, these four-center integrals are most efficiently evaluated with the resolution of identity (RI) technique, which expands basis-function products in an auxiliary basis. In this work we show the practical applicability of a localized RI-variant ('RI-LVL'), which expands products of basis functions only in the subset of those auxiliary basis functions which are located at the same atoms as the basis functions. We demonstrate the accuracy of RI-LVL for Hartree-Fock calculations, for the PBE0 hybrid density functional, as well as for RPA and MP2 perturbation theory. Molecular test sets used include the S22 set of weakly interacting molecules, the G3 test set, as well as the G2-1 and BH76 test sets, and heavy elements including titanium dioxide, copper and gold clusters. Our RI-LVL implementation paves the way for linear-scaling RI-based hybrid functional calculations for large systems and for all-electron many-body perturbation theory with significantly reduced computational and memory cost.
Resumo:
In this paper, the framework is described for the modelling of granular material by employing Computational Fluid Dynamics (CFD). This is achieved through the use and implementation in the continuum theory of constitutive relations, which are derived in a granular dynamics framework and parametrise particle interactions that occur at the micro-scale level. The simulation of a process often met in bulk solids handling industrial plants involving granular matter, (i.e. filling of a flat-bottomed bin with a binary material mixture through pneumatic conveying-emptying of the bin in core flow mode-pneumatic conveying of the material coming out of a the bin) is presented. The results of the presented simulation demonstrate the capability of the numerical model to represent successfully key granular processes (i.e. segregation/degradation), the prediction of which is of great importance in the process engineering industry.
Resumo:
In this paper, a Computational Fluid Dynamics framework is presented for the modelling of key processes which involve granular material (i.e. segregation, degradation, caking). Appropriate physical models and sophisticated algorithms have been developed for the correct representation of the different material components in a granular mixture. The various processes, which arise from the micromechanical properties of the different mixture species can be obtained and parametrised in a DEM / experimental framework, thus enabling the continuum theory to correctly account for the micromechanical properties of a granular system. The present study establishes the link between the micromechanics and continuum theory and demonstrates the model capabilities in simulations of processes which are of great importance to the process engineering industry and involve granular materials in complex geometries.
Resumo:
The growth of computer power allows the solution of complex problems related to compressible flow, which is an important class of problems in modern day CFD. Over the last 15 years or so, many review works on CFD have been published. This book concerns both mathematical and numerical methods for compressible flow. In particular, it provides a clear cut introduction as well as in depth treatment of modern numerical methods in CFD. This book is organised in two parts. The first part consists of Chapters 1 and 2, and is mainly devoted to theoretical discussions and results. Chapter 1 concerns fundamental physical concepts and theoretical results in gas dynamics. Chapter 2 describes the basic mathematical theory of compressible flow using the inviscid Euler equations and the viscous Navier–Stokes equations. Existence and uniqueness results are also included. The second part consists of modern numerical methods for the Euler and Navier–Stokes equations. Chapter 3 is devoted entirely to the finite volume method for the numerical solution of the Euler equations and covers fundamental concepts such as order of numerical schemes, stability and high-order schemes. The finite volume method is illustrated for 1-D as well as multidimensional Euler equations. Chapter 4 covers the theory of the finite element method and its application to compressible flow. A section is devoted to the combined finite volume–finite element method, and its background theory is also included. Throughout the book numerous examples have been included to demonstrate the numerical methods. The book provides a good insight into the numerical schemes, theoretical analysis, and validation of test problems. It is a very useful reference for applied mathematicians, numerical analysts, and practice engineers. It is also an important reference for postgraduate researchers in the field of scientific computing and CFD.