952 resultados para Computational analysis
Resumo:
In this study, regression models are evaluated for grouped survival data when the effect of censoring time is considered in the model and the regression structure is modeled through four link functions. The methodology for grouped survival data is based on life tables, and the times are grouped in k intervals so that ties are eliminated. Thus, the data modeling is performed by considering the discrete models of lifetime regression. The model parameters are estimated by using the maximum likelihood and jackknife methods. To detect influential observations in the proposed models, diagnostic measures based on case deletion, which are denominated global influence, and influence measures based on small perturbations in the data or in the model, referred to as local influence, are used. In addition to those measures, the local influence and the total influential estimate are also employed. Various simulation studies are performed and compared to the performance of the four link functions of the regression models for grouped survival data for different parameter settings, sample sizes and numbers of intervals. Finally, a data set is analyzed by using the proposed regression models. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The oxidation of critical cysteines/related thiols of adenine nucleotide translocase (ANT) is believed to be an important event of the Ca(2+)-induced mitochondrial permeability transition (MPT), a process mediated by a cyclosporine A/ADP-sensitive permeability transition pores (PTP) opening. We addressed the ANT-Cys(56) relative mobility status resulting from the interaction of ANT/surrounding cardiolipins with Ca(2+) and/or ADP by means of computational chemistry analysis (Molecular Interaction Fields and Molecular Dynamics studies), supported by classic mitochondrial swelling assays. The following events were predicted: (i) Ca(2+) interacts preferentially with the ANT surrounding cardiolipins bound to the H4 helix of translocase, (ii) weakens the cardiolipins/ANT interactions and (iii) destabilizes the initial ANT-Cys(56) residue increasing its relative mobility. The binding of ADP that stabilizes the conformation ""m"" of ANT and/or cardiolipin, respectively to H5 and H4 helices, could stabilize their contacts with the short helix h56 that includes Cys(56), accounting for reducing its relative mobility. The results suggest that Ca(2+) binding to adenine nucleotide translocase (ANT)-surrounding cardiolipins in c-state of the translocase enhances (ANT)-Cys(56) relative mobility and that this may constitute a potential critical step of Ca(2+)-induced PTP opening. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The BR algorithm is a novel and efficient method to find all eigenvalues of upper Hessenberg matrices and has never been applied to eigenanalysis for power system small signal stability. This paper analyzes differences between the BR and the QR algorithms with performance comparison in terms of CPU time based on stopping criteria and storage requirement. The BR algorithm utilizes accelerating strategies to improve its performance when computing eigenvalues of narrowly banded, nearly tridiagonal upper Hessenberg matrices. These strategies significantly reduce the computation time at a reasonable level of precision. Compared with the QR algorithm, the BR algorithm requires fewer iteration steps and less storage space without depriving of appropriate precision in solving eigenvalue problems of large-scale power systems. Numerical examples demonstrate the efficiency of the BR algorithm in pursuing eigenanalysis tasks of 39-, 68-, 115-, 300-, and 600-bus systems. Experiment results suggest that the BR algorithm is a more efficient algorithm for large-scale power system small signal stability eigenanalysis.
Resumo:
Formaldehyde-derived oxazolidine derivatives 4-7 of the beta-adrenoreceptor antagonists metoprolol 1, atenolol 2 and timolol 3 have been synthesised. Conformational analysis of 1-3 and the oxazolidine derivatives 4-7 has been performed using H-1 NMR spectroscopy and computational methods. The H-1 NMR studies show that for the aryloxypropanolamine beta-adrenoreceptor antagonists there is a predominance of the conformer in which the amine group is approximately antiperiplanar or trans to the aryloxymethylene group. Both H-1 NMR data and theoretical studies indicate that the oxazolidine derivatives 4-7 and the aryloxypropanolamine beta-adrenoreceptor antagonists 1-3 adopt similar conformations around the beta-amino alcohol moiety. Thus, oxazolidine ring formation does not dramatically alter the preferred conformation adopted by the beta-amino alcohol moiety of 1-3. Oxazolidine derivatives of aryloxypropanolamine beta-adrenoreceptor antagonists may therefore be appropriate as prodrugs, or semi-rigid analogues, when greater lipophilicity is required for drug delivery.
Resumo:
We use theoretical and numerical methods to investigate the general pore-fluid flow patterns near geological lenses in hydrodynamic and hydrothermal systems respectively. Analytical solutions have been rigorously derived for the pore-fluid velocity, stream function and excess pore-fluid pressure near a circular lens in a hydrodynamic system. These analytical solutions provide not only a better understanding of the physics behind the problem, but also a valuable benchmark solution for validating any numerical method. Since a geological lens is surrounded by a medium of large extent in nature and the finite element method is efficient at modelling only media of finite size, the determination of the size of the computational domain of a finite element model, which is often overlooked by numerical analysts, is very important in order to ensure both the efficiency of the method and the accuracy of the numerical solution obtained. To highlight this issue, we use the derived analytical solutions to deduce a rigorous mathematical formula for designing the computational domain size of a finite element model. The proposed mathematical formula has indicated that, no matter how fine the mesh or how high the order of elements, the desired accuracy of a finite element solution for pore-fluid flow near a geological lens cannot be achieved unless the size of the finite element model is determined appropriately. Once the finite element computational model has been appropriately designed and validated in a hydrodynamic system, it is used to examine general pore-fluid flow patterns near geological lenses in hydrothermal systems. Some interesting conclusions on the behaviour of geological lenses in hydrodynamic and hydrothermal systems have been reached through the analytical and numerical analyses carried out in this paper.
Resumo:
The explosive growth in biotechnology combined with major advancesin information technology has the potential to radically transformimmunology in the postgenomics era. Not only do we now have readyaccess to vast quantities of existing data, but new data with relevanceto immunology are being accumulated at an exponential rate. Resourcesfor computational immunology include biological databases and methodsfor data extraction, comparison, analysis and interpretation. Publiclyaccessible biological databases of relevance to immunologists numberin the hundreds and are growing daily. The ability to efficientlyextract and analyse information from these databases is vital forefficient immunology research. Most importantly, a new generationof computational immunology tools enables modelling of peptide transportby the transporter associated with antigen processing (TAP), modellingof antibody binding sites, identification of allergenic motifs andmodelling of T-cell receptor serial triggering.
Resumo:
Allergy is a major cause of morbidity worldwide. The number of characterized allergens and related information is increasing rapidly creating demands for advanced information storage, retrieval and analysis. Bioinformatics provides useful tools for analysing allergens and these are complementary to traditional laboratory techniques for the study of allergens. Specific applications include structural analysis of allergens, identification of B- and T-cell epitopes, assessment of allergenicity and cross-reactivity, and genome analysis. In this paper, the most important bioinformatic tools and methods with relevance to the study of allergy have been reviewed.
Resumo:
Radical anions are present in several chemical processes, and understanding the reactivity of these species may be described by their thermodynamic properties. Over the last years, the formation of radical ions in the gas phase has been an important issue concerning electrospray ionization mass spectrometry studies. In this work, we report on the generation of radical anions of quinonoid compounds (Q) by electrospray ionization mass spectrometry. The balance between radical anion formation and the deprotonated molecule is also analyzed by influence of the experimental parameters (gas-phase acidity, electron affinity, and reduction potential) and solvent system employed. The gas-phase parameters for formation of radical species and deprotonated species were achieved on the basis of computational thermochemistry. The solution effects on the formation of radical anion (Q(center dot-)) and dianion (Q(2-)) were evaluated on the basis of cyclic voltammetry analysis and the reduction potentials compared with calculated electron affinities. The occurrence of unexpected ions [Q + 15](-) was described as being a reaction between the solvent system and the radical anion, Q(center dot-).The gas-phase chemistry of the electrosprayed radical anions was obtained by collisional-induced dissociation and compared to the relative energy calculations. These results are important for understanding the formation and reactivity of radical anions and to establish their correlation with the reducing properties by electrospray ionization analyses.
Resumo:
A computational study of the isomers of tetrafluorinated [2.2]cyclophanes persubstituted in one ring, namely F-4-[2.2]paracyclophane (4), F-4-anti-[2.2]metacyclophane (5a), F-4-syn-[2.2]metacyclophane (5b), and F-4-[2.2]metaparacyclophane (6a and 6b), was carried out. The effects of fluorination on the geometries, relative energies, local and global aromaticity, and strain energies of the bridges and rings were investigated. An analysis of the electron density by B3PW91/6-31+G(d,p), B3LYP/6-31+G(d,p), and MP2/6-31+G(d,p) was carried out using the natural bond orbitals (NBO), natural steric analysis (NSA), and atoms in molecules (AIM) methods. The analysis of frontier molecular orbitals (MOs) was also employed. The results indicated that the molecular structure of [2.2]paracyclophane is the most affected by the fluorination. Isodesmic reactions showed that the fluorinated rings are more strained than the nonfluorinated ones. The NICS, HOMA, and PDI criteria evidenced that the fluorination affects the aromaticity of both the fluorinated and the nonfluorinated rings. The NBO and NSA analyses gave an indication that the fluorination increases not only the number of through-space interactions but also their magnitude. The AIM analysis suggested that the through-space interactions are restricted to the F-4-[2.2]metacyclophanes. In addition, the atomic properties, computed over the atomic basins, shave evidence that not only the substitution, but also the position of the bridges could affect the atomic charges. the first atomic moments, and the atomic volumes.
Resumo:
The traditional methods employed to detect atherosclerotic lesions allow for the identification of lesions; however, they do not provide specific characterization of the lesion`s biochemistry. Currently, Raman spectroscopy techniques are widely used as a characterization method for unknown substances, which makes this technique very important for detecting atherosclerotic lesions. The spectral interpretation is based on the analysis of frequency peaks present in the signal; however, spectra obtained from the same substance can show peaks slightly different and these differences make difficult the creation of an automatic method for spectral signal analysis. This paper presents a signal analysis method based on a clustering technique that allows for the classification of spectra as well as the inference of a diagnosis about the arterial wall condition. The objective is to develop a computational tool that is able to create clusters of spectra according to the arterial wall state and, after data collection, to allow for the classification of a specific spectrum into its correct cluster.
Resumo:
In this paper a methodology for integrated multivariate monitoring and control of biological wastewater treatment plants during extreme events is presented. To monitor the process, on-line dynamic principal component analysis (PCA) is performed on the process data to extract the principal components that represent the underlying mechanisms of the process. Fuzzy c-means (FCM) clustering is used to classify the operational state. Performing clustering on scores from PCA solves computational problems as well as increases robustness due to noise attenuation. The class-membership information from FCM is used to derive adequate control set points for the local control loops. The methodology is illustrated by a simulation study of a biological wastewater treatment plant, on which disturbances of various types are imposed. The results show that the methodology can be used to determine and co-ordinate control actions in order to shift the control objective and improve the effluent quality.
Resumo:
We compare the performance of two different low-storage filter diagonalisation (LSFD) strategies in the calculation of complex resonance energies of the HO2, radical. The first is carried out within a complex-symmetric Lanczos subspace representation [H. Zhang, S.C. Smith, Phys. Chem. Chem. Phys. 3 (2001) 2281]. The second involves harmonic inversion of a real autocorrelation function obtained via a damped Chebychev recursion [V.A. Mandelshtam, H.S. Taylor, J. Chem. Phys. 107 (1997) 6756]. We find that while the Chebychev approach has the advantage of utilizing real algebra in the time-consuming process of generating the vector recursion, the Lanczos, method (using complex vectors) requires fewer iterations, especially for low-energy part of the spectrum. The overall efficiency in calculating resonances for these two methods is comparable for this challenging system. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Observations of an insect's movement lead to theory on the insect's flight behaviour and the role of movement in the species' population dynamics. This theory leads to predictions of the way the population changes in time under different conditions. If a hypothesis on movement predicts a specific change in the population, then the hypothesis can be tested against observations of population change. Routine pest monitoring of agricultural crops provides a convenient source of data for studying movement into a region and among fields within a region. Examples of the use of statistical and computational methods for testing hypotheses with such data are presented. The types of questions that can be addressed with these methods and the limitations of pest monitoring data when used for this purpose are discussed. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
We consider a mixture model approach to the regression analysis of competing-risks data. Attention is focused on inference concerning the effects of factors on both the probability of occurrence and the hazard rate conditional on each of the failure types. These two quantities are specified in the mixture model using the logistic model and the proportional hazards model, respectively. We propose a semi-parametric mixture method to estimate the logistic and regression coefficients jointly, whereby the component-baseline hazard functions are completely unspecified. Estimation is based on maximum likelihood on the basis of the full likelihood, implemented via an expectation-conditional maximization (ECM) algorithm. Simulation studies are performed to compare the performance of the proposed semi-parametric method with a fully parametric mixture approach. The results show that when the component-baseline hazard is monotonic increasing, the semi-parametric and fully parametric mixture approaches are comparable for mildly and moderately censored samples. When the component-baseline hazard is not monotonic increasing, the semi-parametric method consistently provides less biased estimates than a fully parametric approach and is comparable in efficiency in the estimation of the parameters for all levels of censoring. The methods are illustrated using a real data set of prostate cancer patients treated with different dosages of the drug diethylstilbestrol. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
Signal peptides and transmembrane helices both contain a stretch of hydrophobic amino acids. This common feature makes it difficult for signal peptide and transmembrane helix predictors to correctly assign identity to stretches of hydrophobic residues near the N-terminal methionine of a protein sequence. The inability to reliably distinguish between N-terminal transmembrane helix and signal peptide is an error with serious consequences for the prediction of protein secretory status or transmembrane topology. In this study, we report a new method for differentiating protein N-terminal signal peptides and transmembrane helices. Based on the sequence features extracted from hydrophobic regions (amino acid frequency, hydrophobicity, and the start position), we set up discriminant functions and examined them on non-redundant datasets with jackknife tests. This method can incorporate other signal peptide prediction methods and achieve higher prediction accuracy. For Gram-negative bacterial proteins, 95.7% of N-terminal signal peptides and transmembrane helices can be correctly predicted (coefficient 0.90). Given a sensitivity of 90%, transmembrane helices can be identified from signal peptides with a precision of 99% (coefficient 0.92). For eukaryotic proteins, 94.2% of N-terminal signal peptides and transmembrane helices can be correctly predicted with coefficient 0.83. Given a sensitivity of 90%, transmembrane helices can be identified from signal peptides with a precision of 87% (coefficient 0.85). The method can be used to complement current transmembrane protein prediction and signal peptide prediction methods to improve their prediction accuracies. (C) 2003 Elsevier Inc. All rights reserved.