943 resultados para Complex Motor Skill


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A characteristic feature of all myosins is the presence of two sequences which despite considerable variations in length and composition can be aligned with loops 1 (residues 204-216) and 2 (residues 627-646) in the chicken myosin-head heavy chain sequence. Recently, an intriguing hypothesis has been put forth suggesting that diverse performances of myosin motors are achieved through variations in the sequences of loops 1 and 2 [Spudich, J. (1994) Nature (London) 372, 515-518]. Here, we report on the study of the effects of tryptic digestion of these loops on the motor and enzymatic functions of myosin. Tryptic digestions of myosin, which produced heavy meromyosin (HMM) with different percentages of molecules cleaved at both loop 1 and loop 2, resulted in the consistent decrease in the sliding velocity of actin filaments over HMM in the in vitro motility assays, did not affect the Vmax, and increased the Km values for actin-activated ATPase of HMM. Selective cleavage of loop 2 on HMM decreased its affinity for actin but did not change the sliding velocity of actin in the in vitro motility assays. The cleavage of loop 1 and HMM decreased the mean sliding velocity of actin in such assays by almost 50% but did not alter its affinity for HMM. To test for a possible kinetic determinant of the change in motility, 1-N6-ethenoadenosine diphosphate (epsilon-ADP) release from cleaved and uncleaved myosin subfragment 1 (S1) was examined. Tryptic digestion of loop 1 slightly accelerated the release of epsilon-ADP from S1 but did not affect the rate of epsilon-ADP release from acto-S1 complex. Overall, the results of this work support the hypothesis that loop 1 can modulate the motor function of myosin and suggest that such modulation involves a mechanism other than regulation of ADP release from myosin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Qualquer tarefa motora ativa se dá pela ativação de uma população de unidades motoras. Porém, devido a diversas dificuldades, tanto técnicas quanto éticas, não é possível medir a entrada sináptica dos motoneurônios em humanos. Por essas razões, o uso de modelos computacionais realistas de um núcleo de motoneurônios e as suas respectivas fibras musculares tem um importante papel no estudo do controle humano dos músculos. Entretanto, tais modelos são complexos e uma análise matemática é difícil. Neste texto é apresentada uma abordagem baseada em identificação de sistemas de um modelo realista de um núcleo de unidades motoras, com o objetivo de obter um modelo mais simples capaz de representar a transdução das entradas do núcleo de unidades motoras na força do músculo associado ao núcleo. A identificação de sistemas foi baseada em um algoritmo de mínimos quadrados ortogonal para achar um modelo NARMAX, sendo que a entrada considerada foi a condutância sináptica excitatória dendrítica total dos motoneurônios e a saída foi a força dos músculos produzida pelo núcleo de unidades motoras. O modelo identificado reproduziu o comportamento médio da saída do modelo computacional realista, mesmo para pares de sinal de entrada-saída não usados durante o processo de identificação do modelo, como sinais de força muscular modulados senoidalmente. Funções de resposta em frequência generalizada do núcleo de motoneurônios foram obtidas do modelo NARMAX, e levaram a que se inferisse que oscilações corticais na banda-beta (20 Hz) podem influenciar no controle da geração de força pela medula espinhal, comportamento do núcleo de motoneurônios até então desconhecido.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A teoria de Jean Piaget sobre o desenvolvimento da inteligência tem sido utilizada na área de inteligência computacional como inspiração para a proposição de modelos de agentes cognitivos. Embora os modelos propostos implementem aspectos básicos importantes da teoria de Piaget, como a estrutura do esquema cognitivo, não consideram o problema da fundamentação simbólica e, portanto, não se preocupam com os aspectos da teoria que levam à aquisição autônoma da semântica básica para a organização cognitiva do mundo externo, como é o caso da aquisição da noção de objeto. Neste trabalho apresentamos um modelo computacional de esquema cognitivo inspirado na teoria de Piaget sobre a inteligência sensório-motora que se desenvolve autonomamente construindo mecanismos por meio de princípios computacionais pautados pelo problema da fundamentação simbólica. O modelo de esquema proposto tem como base a classificação de situações sensório-motoras utilizadas para a percepção, captação e armazenamento das relações causais determiníscas de menor granularidade. Estas causalidades são então expandidas espaço-temporalmente por estruturas mais complexas que se utilizam das anteriores e que também são projetadas de forma a possibilitar que outras estruturas computacionais autônomas mais complexas se utilizem delas. O modelo proposto é implementado por uma rede neural artificial feed-forward cujos elementos da camada de saída se auto-organizam para gerar um grafo sensóriomotor objetivado. Alguns mecanismos computacionais já existentes na área de inteligência computacional foram modificados para se enquadrarem aos paradigmas de semântica nula e do desenvolvimento mental autônomo, tomados como base para lidar com o problema da fundamentação simbólica. O grafo sensório-motor auto-organizável que implementa um modelo de esquema inspirado na teoria de Piaget proposto neste trabalho, conjuntamente com os princípios computacionais utilizados para sua concepção caminha na direção da busca pelo desenvolvimento cognitivo artificial autônomo da noção de objeto.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aerobic Gymnastic is the ability to perform complex movements produced by the traditional aerobic exercises, in a continuous manner, with high intensity, perfectly integrated with soundtracks. This sport is performed in an aerobic/anaerobic lactacid condition and expects the execution of complex movements produced by the traditional aerobic exercises integrated with difficulty elements performed with a high technical level. An inaccuracy about this sport is related to the name itself “aerobic” because Aerobic Gymnastic does not use just the aerobic work during the competition, due to the fact that the exercises last among 1’30” and 1’45” at high rhythm. Agonistic Aerobics exploit the basic movements of amateur Aerobics and its coordination schemes, even though the agonistic Aerobics is so much intense than the amateur Aerobics to need a completely different mix of energetic mechanisms. Due to the complexity and the speed with which you perform the technical elements of Aerobic Gymnastic, the introduction of video analysis is essential for a qualitative and quantitative evaluation of athletes’ performance during the training. The performance analysis can allow the accurate analysis and explanation of the evolution and dynamics of a historical phenomenon and motor sports. The notational analysis is used by technicians to have an objective analysis of performance. Tactics, technique and individual movements can be analyzed to help coaches and athletes to re-evaluate their performance and gain advantage during the competition. The purpose of the following experimental work will be a starting point for analyzing the performance of the athletes in an objective way, not only during competitions, but especially during the phases of training. It is, therefore, advisable to introduce the video analysis and notational analysis for more quantitative and qualitative examination of technical movements. The goal is to lead to an improvement of the technique of the athlete and the teaching of the coach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There has been a tremendous increase in our knowledge of hum motor performance over the last few decades. Our theoretical understanding of how an individual learns to move is sophisticated and complex. It is difficult however to relate much of this information in practical terms to physical educators, coaches, and therapists concerned with the learning of motor skills (Shumway-Cook & Woolcott, 1995). Much of our knowledge stems from lab testing which often appears to bear little relation to real-life situations. This lack of ecological validity has slowed the flow of information from the theorists and researchers to the practitioners. This paper is concerned with taking some small aspects of motor learning theory, unifying them, and presenting them in a usable fashion. The intention is not to present a recipe for teaching motor skills, but to present a framework from which solutions can be found. If motor performance research has taught us anything, it is that every individual and situation presents unique challenges. By increasing our ability to conceptualize the learning situation we should be able to develop more flexible and adaptive responses to the challege of teaching motor skills. The model presented here allows a teacher, coach, or therapist to use readily available observations and known characteristics about a motor task and to conceptualize them in a manner which allows them to make appropriate teaching/learning decisions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nerve sprouts emerge from motor nerve terminals following blockade of exo-endocytosis for more than 3 days by botulinum neurotoxin (BoNT), and form functional synapses, albeit temporary. Upon restoration of synaptic activity to the parent terminal 7 and 90 days after exposure to BoNT/F or A respectively, a concomitant retraction of the outgrowths was observed. BoNT/E caused short-term neuroparalysis, and dramatically accelerated the recovery of BoNT/A-paralyzed muscle by further truncation of SNAP-25 and its replenishment with functional full-length SNARE. The removal of 9 C-terminal residues from SNAP-25 by BoNT/A leads to persistence of the inhibitory product due to the formation of a nonproductive SNARE complex(es) at release sites, whereas deletion of a further 17 amino acids permits replenishment and a speedy recovery. (C) 2003 Elsevier Science (USA). All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In relation to motor control, the basal ganglia have been implicated in both the scaling and focusing of movement. Hypokinetic and hyperkinetic movement disorders manifest as a consequence of overshooting and undershooting GPi (globus pallidus internus) activity thresholds, respectively. Recently, models of motor control have been borrowed to translate cognitive processes relating to the overshooting and undershooting of GPi activity, including attention and executive function. Linguistic correlates, however, are yet to be extrapolated in sufficient detail. The aims of the present investigation were to: (1) characterise cognitive-linguistic processes within hypokinetic and hyperkinetic neural systems, as defined by motor disturbances; (2) investigate the impact of surgically-induced GPi lesions upon language abilities. Two Parkinsonian cases with opposing motor symptoms (akinetic versus dystonic/dyskinetic) served as experimental subjects in this research. Assessments were conducted both prior to as well as 3 and 12 months following bilateral posteroventral pallidotomy (PVP). Reliable changes in performance (i.e. both improvements and decrements) were typically restricted to tasks demanding complex linguistic operations across subjects. Hyperkinetic motor symptoms were associated with an initial overall improvement in complex language function as a consequence of bilateral PVP, which diminished over time, suggesting a decrescendo effect relative to surgical beneficence. In contrast, hypokinetic symptoms were associated with a more stable longitudinal linguistic profile, albeit defined by higher proportions of reliable decline versus improvement in postoperative assessment scores. The above findings endorsed the integration of the GPi within cognitive mechanisms involved in the arbitration of complex language functions. In relation to models of motor control, 'focusing' was postulated to represent the neural processes underpinning lexical-semantic manipulation, and 'scaling' the potential allocation of cognitive resources during the mediation of high-level linguistic tasks. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to test the effects of visual occlusion and fatigue on the motor performance of vertical skills in synchronized swimming. Experienced synchronized swimmers (n = 12) were randomly assigned to either an exercise or nonexercise (control) activity group. Subjective ratings of fatigue were obtained from the swimmers who then each performed four vertical skills under alternating conditions of vision and visual occlusion before and after either a swimming (designed to induce fatigue) or nonphysical activity. A main effect of activity (p < .03) was found for two measures of performance accuracy (lateral and anterior total distance traveled) but not for lateral and anterior maximum deviation from vertical, indicating that fatigue played a role in executing the skills. The data also indicate that the maintenance of a stationary position is a skill of greater difficulty than maintaining a true vertical. In contrast with previous research findings on synchronized swimmers, a significant effect of vision in all conditions was found, with performance decrements in the conditions of visual occlusion showing that vision provided important sensory input for the swimmers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The organisation of the human neuromuscular-skeletal system allows an extremely wide variety of actions to be performed, often with great dexterity. Adaptations associated with skill acquisition occur at all levels of the neuromuscular-skeletal system although all neural adaptations are inevitably constrained by the organisation of the actuating apparatus (muscles and bones). We quantified the extent to which skill acquisition in an isometric task set is influenced by the mechanical properties of the muscles used to produce the required actions. Initial performance was greatly dependent upon the specific combination of torques required in each variant of the experimental task. Five consecutive days of practice improved the performance to a similar degree across eight actions despite differences in the torques required about the elbow and forearm. The proportional improvement in performance was also similar when the actions were performed at either 20 or 40% of participants' maximum voluntary torque capacity. The skill acquired during practice was successfully extrapolated to variants of the task requiring more torque than that required during practice. We conclude that while the extent to which skill can be acquired in isometric actions is independent of the specific combination of joint torques required for target acquisition, the nature of the kinetic adaptations leading to the performance improvement in isometric actions is influenced by the neural and mechanical properties of the actuating muscles.