990 resultados para Combine harvester
Resumo:
This wall-mounted sculpture features eight photographic prints displayed on a computer monitor mounting system. The eight panels each swivel and articulate separately. Together, they combine to create an abstract landscape based on a desktop background image of an idyllic tropical setting. Recalling the workstation of a futures trader, logistics manager, or design guru, the screen armature draws out the simultaneously romantic and vacuous characteristics of the imagery. By combining the visual languages of both physical and on-screen desktop environments with the pictorial traditions of landscape and abstraction, this work questions how and where we deploy nature, desire and wonderment in our increasingly technologised lives.
Resumo:
In this video, text floats on screen amidst a field of swirling coloured orbs and a stock music soundtrack. The text is sourced from Internet dating websites and combine into a single animated portrait charting an array of likes, dislikes, influences, beliefs and hobbies. This work examines the nature of consciousness and identity in a contemporary context. It reworks the languages of Internet dating websites to question how we construct and communicate our sense of self. Drawing on Zygmunt Bauman’s theoretical work on “liquid modernity”, this work presents an exaggerated take on contemporary identity that emphasizes its construction through consumer tastes, lifestyle choices and relationships with popular culture.
Resumo:
Divergence dating studies, which combine temporal data from the fossil record with branch length data from molecular phylogenetic trees, represent a rapidly expanding approach to understanding the history of life. National Evolutionary Synthesis Center hosted the first Fossil Calibrations Working Group (3–6 March, 2011, Durham, NC, USA), bringing together palaeontologists, molecular evolutionists and bioinformatics experts to present perspectives from disciplines that generate, model and use fossil calibration data. Presentations and discussions focused on channels for interdisciplinary collaboration, best practices for justifying, reporting and using fossil calibrations and roadblocks to synthesis of palaeontological and molecular data. Bioinformatics solutions were proposed, with the primary objective being a new database for vetted fossil calibrations with linkages to existing resources, targeted for a 2012 launch.
Resumo:
Australasian marsupials include three major radiations, the insectivorous/carnivorous Dasyuromorphia, the omnivorous bandicoots (Peramelemorphia), and the largely herbivorous diprotodontians. Morphologists have generally considered the bandicoots and diprotodontians to be closely related, most prominently because they are both syndactylous (with the 2nd and 3rd pedal digits being fused). Molecular studies have been unable to confirm or reject this Syndactyla hypothesis. Here we present new mitochondrial (mt) genomes from a spiny bandicoot (Echymipera rufescens) and two dasyurids, a fat-tailed dunnart (Sminthopsis crassicaudata) and a northern quoll (Dasyurus hallucatus). By comparing trees derived from pairwise base-frequency differences between taxa with standard (absolute, uncorrected) distance trees, we infer that composition bias among mt protein-coding and RNA sequences is sufficient to mislead tree reconstruction. This can explain incongruence between trees obtained from mt and nuclear data sets. However, after excluding major sources of compositional heterogeneity, both the “reduced-bias” mt and nuclear data sets clearly favor a bandicoot plus dasyuromorphian association, as well as a grouping of kangaroos and possums (Phalangeriformes) among diprotodontians. Notably, alternatives to these groupings could only be confidently rejected by combining the mt and nuclear data. Elsewhere on the tree, Dromiciops appears to be sister to the monophyletic Australasian marsupials, whereas the placement of the marsupial mole (Notoryctes) remains problematic. More generally, we contend that it is desirable to combine mt genome and nuclear sequences for inferring vertebrate phylogeny, but as separately modeled process partitions. This strategy depends on detecting and excluding (or accounting for) major sources of nonhistorical signal, such as from compositional nonstationarity.
Resumo:
The criticality of service innovation in building and sustaining competitive advantage is gaining increasing recognition in the marketplace. Using empirical data from US and Australian project-oriented firms, the study uses a multi-staged multi-method research program to demonstrate how entrepreneurial service firms strategically combine resources at hand (bricolage) to innovate and stay ahead of rivals. The research shows that service entrepreneurship (SE) and bricolage influence two forms of service innovation (interactive and supportive), which in turn is associated with sustained competitive advantage (SCA). The results suggest that SE and bricolage indirectly relate to SCA through service innovation. The findings offer novel insights into how project-oriented service firms engage in innovation. In short, the findings encourage the “making do by combining resources at hand” as higher levels of entrepreneurial bricolage are associated with higher levels of interactive and supportive innovation enabling SCA, suggesting a new model.
Resumo:
Sandwich shells have recently emerged as aesthetically pleasing, efficient and economical structural systems, with a number of applications. They combine the advantages of sandwich layer technology together with those of shell action. With different materials and thicknesses used in the sandwich layers, their performance characteristics largely remain un-quantified and there are no guidelines at present for their design. This research paper provides verification, through finite element modeling and testing, for the application of this technology to dome styled dwellings with research currently being conducted into the further application to roofing and floor structures.
Resumo:
The chief challenge facing persistent robotic navigation using vision sensors is the recognition of previously visited locations under different lighting and illumination conditions. The majority of successful approaches to outdoor robot navigation use active sensors such as LIDAR, but the associated weight and power draw of these systems makes them unsuitable for widespread deployment on mobile robots. In this paper we investigate methods to combine representations for visible and long-wave infrared (LWIR) thermal images with time information to combat the time-of-day-based limitations of each sensing modality. We calculate appearance-based match likelihoods using the state-of-the-art FAB-MAP [1] algorithm to analyse loop closure detection reliability across different times of day. We present preliminary results on a dataset of 10 successive traverses of a combined urban-parkland environment, recorded in 2-hour intervals from before dawn to after dusk. Improved location recognition throughout an entire day is demonstrated using the combined system compared with methods which use visible or thermal sensing alone.
Resumo:
The mineral xonotlite Ca 6Si 6O 17(OH) 2 is a crystalline calcium silicate hydrate which is widely used in plaster boards and in many industrial applications. The structure of xonotlite is best described as having a dreierdoppelketten silicate structure, and describes the repeating silicate trimer which forms the silicate chains, and doppel indicating that two chains combine. Raman bands at 1042 and 1070 cm -1 are assigned to the SiO stretching vibrations of linked units of Si 4O 11 units. Raman bands at 961 and 980 cm -1 serve to identify Si 3O 10 units. The broad Raman band at 862 cm -1 is attributed to hydroxyl deformation modes. Intense Raman bands at 593 and 695 cm -1 are assigned to OSiO bending vibrations. Intense Raman bands at 3578, 3611, 3627 and 3665 cm -1 are assigned to OH stretching vibrations of the OH units in xonotlite. Infrared spectra are in harmony with the Raman spectra. Raman spectroscopy with complimentary infrared spectroscopy enables the characterisation of the building material xonotlite.
Resumo:
This paper presents the details of an experimental study of a cold-formed steel beam known as LiteSteel Beam (LSB) subject to combined shear and bending actions. The LSBs have the beneficial characteristics of torsionally rigid rectangular hollow flanges combined with economical fabrication processes from a single strip of high strength steel. They combine the stability of hot-rolled steel sections with the high strength to weight ratio of conventional cold-formed steel sections. The LSB sections are commonly used as flexural members in residential, industrial and commercial buildings. In order to ensure safe and efficient designs of LSBs, many research studies have been undertaken on the flexural and shear strengths of LSBs. To date, however, no investigation has been conducted into the strength of LSB sections under combined shear and bending actions. Hence a detailed experimental study involving 18 tests was undertaken to investigate the behaviour and strength of LSBs under combined shear and bending actions. Test results showed that AS/NZS 4600 design rules for unstiffened webs grossly underestimated the capacity of LSBs. Therefore improved design equations were proposed for the combined shear and bending capacities of LSBs based on experimental results.
Resumo:
Despite their ecological significance as decomposers and their evolutionary significance as the most speciose eusocial insect group outside the Hymenoptera, termite (Blattodea: Termitoidae or Isoptera) evolutionary relationships have yet to be well resolved. Previous morphological and molecular analyses strongly conflict at the family level and are marked by poor support for backbone nodes. A mitochondrial (mt) genome phylogeny of termites was produced to test relationships between the recognised termite families, improve nodal support and test the phylogenetic utility of rare genomic changes found in the termite mt genome. Complete mt genomes were sequenced for 7 of the 9 extant termite families with additional representatives of each of the two most speciose families Rhinotermitidae (3 of 7 subfamilies) and Termitidae (3 of 8 subfamilies). The mt genome of the well supported sister group of termites, the subsocial cockroach Cryptocercus, was also sequenced. A highly supported tree of termite relationships was produced by all analytical methods and data treatment approaches, however the relationship of the termites + Cryptocercus clade to other cockroach lineages was highly affected by the strong nucleotide compositional bias found in termites relative to other dictyopterans. The phylogeny supports previously proposed suprafamilial termite lineages, the Euisoptera and Neoisoptera, a later derived Kalotermitidae as sister group of the Neoisoptera and a monophyletic clade of dampwood (Stolotermitidae, Archotermopsidae) and harvester termites (Hodotermitidae). In contrast to previous termite phylogenetic studies, nodal supports were very high for family-level relationships within termites. Two rare genomic changes in the mt genome control region were found to be molecular synapomorphies for major clades. An elongated stem-loop structure defined the clade Polyphagidae + (Cryptocercus + termites), and a further series of compensatory base changes in this stem loop is synapomorphic for the Neoisoptera. The complicated repeat structures first identified in Reticulitermes, composed of short (A-type) and long (B-type repeats) defines the clade Heterotermitinae + Termitidae, while the secondary loss of A-type repeats is synapomorphic for the non-macrotermitine Termitidae.
Resumo:
This paper presents an approach to modelling the resilience of a generic (potable) water supply system. The system is contextualized as a meta-system consisting of three subsystems to represent the natural catchment, the water treatment plant and the water distribution infrastructure for urban use. An abstract mathematical model of the meta-system is disaggregated progressively to form a cascade of equations forming a relational matrix of models. This allows the investigation of commonly implicit relationships between various operational components within the meta system, the in-depth understanding of specific system components and influential factors and the incorporation of explicit disturbances to explore system behaviour. Consequently, this will facilitate long-term decision making to achieve sustainable solutions for issues such as, meeting a growing demand or managing supply-side influences in the meta-system under diverse water availability regimes. This approach is based on the hypothesis that the means to achieve resilient supply of water may be better managed by modelling the effects of changes at specific levels that have a direct or in some cases indirect impact on higher-order outcomes. Additionally, the proposed strategy allows the definition of approaches to combine disparate data sets to synthesise previously missing or incomplete higher-order information, a scientifically robust means to define and carry out meta-analyses using knowledge from diverse yet relatable disciplines relevant to different levels of the system and for enhancing the understanding of dependencies and inter-dependencies of variable factors at various levels across the meta-system. The proposed concept introduces an approach for modelling a complex infrastructure system as a meta system which consists of a combination of bio-ecological, technical and socio-technical subsystems.
Resumo:
Expert knowledge is used widely in the science and practice of conservation because of the complexity of problems, relative lack of data, and the imminent nature of many conservation decisions. Expert knowledge is substantive information on a particular topic that is not widely known by others. An expert is someone who holds this knowledge and who is often deferred to in its interpretation. We refer to predictions by experts of what may happen in a particular context as expert judgments. In general, an expert-elicitation approach consists of five steps: deciding how information will be used, determining what to elicit, designing the elicitation process, performing the elicitation, and translating the elicited information into quantitative statements that can be used in a model or directly to make decisions. This last step is known as encoding. Some of the considerations in eliciting expert knowledge include determining how to work with multiple experts and how to combine multiple judgments, minimizing bias in the elicited information, and verifying the accuracy of expert information. We highlight structured elicitation techniques that, if adopted, will improve the accuracy and information content of expert judgment and ensure uncertainty is captured accurately. We suggest four aspects of an expert elicitation exercise be examined to determine its comprehensiveness and effectiveness: study design and context, elicitation design, elicitation method, and elicitation output. Just as the reliability of empirical data depends on the rigor with which it was acquired so too does that of expert knowledge.