968 resultados para Colony-stimulating Factor
Resumo:
Tumor progression is facilitated by regulatory T cells (Treg) and restricted by effector T cells. In this study, we document parallel regulation of CD8(+) T cells and Foxp3(+) Tregs by programmed death-1 (PD-1, PDCD1). In addition, we identify an additional role of CTL antigen-4 (CTLA-4) inhibitory receptor in further promoting dysfunction of CD8(+) T effector cells in tumor models (CT26 colon carcinoma and ID8-VEGF ovarian carcinoma). Two thirds of CD8(+) tumor-infiltrating lymphocytes (TIL) expressed PD-1, whereas one third to half of CD8(+) TIL coexpressed PD-1 and CTLA-4. Double-positive (PD-1(+)CTLA-4(+)) CD8(+) TIL had characteristics of more severe dysfunction than single-positive (PD-1(+) or CTLA-4(+)) TIL, including an inability to proliferate and secrete effector cytokines. Blockade of both PD-1 and CTLA-4 resulted in reversal of CD8(+) TIL dysfunction and led to tumor rejection in two thirds of mice. Double blockade was associated with increased proliferation of antigen-specific effector CD8(+) and CD4(+) T cells, antigen-specific cytokine release, inhibition of suppressive functions of Tregs, and upregulation of key signaling molecules critical for T-cell function. When used in combination with GVAX vaccination (consisting of granulocyte macrophage colony-stimulating factor-expressing irradiated tumor cells), inhibitory pathway blockade induced rejection of CT26 tumors in 100% of mice and ID8-VEGF tumors in 75% of mice. Our study indicates that PD-1 signaling in tumors is required for both suppressing effector T cells and maintaining tumor Tregs, and that PD-1/PD-L1 pathway (CD274) blockade augments tumor inhibition by increasing effector T-cell activity, thereby attenuating Treg suppression. Cancer Res; 73(12); 3591-603. ©2013 AACR.
Resumo:
OBJECTIVE: Pigmented orthochromatic leukodystrophy (POLD) and hereditary diffuse leukoencephalopathy with axonal spheroids (HDLS) are rare neurodegenerative disorders characterized by cerebral white matter abnormalities, myelin loss, and axonal swellings. The striking overlap of clinical and pathologic features of these disorders suggested a common pathogenesis; however, no genetic or mechanistic link between POLD and HDLS has been established. Recently, we reported that mutations in the colony-stimulating factor 1 receptor (CSF1R) gene cause HDLS. In this study, we determined whether CSF1R mutations are also a cause of POLD. METHODS: We performed sequencing of CSF1R in 2 pathologically confirmed POLD families. For the largest family (FTD368), a detailed case report was provided and brain samples from 2 affected family members previously diagnosed with POLD were re-evaluated to determine whether they had HDLS features. In vitro functional characterization of wild-type and mutant CSF1R was also performed. RESULTS: We identified CSF1R mutations in both POLD families: in family 5901, we found c.2297T>C (p.M766T), previously reported by us in HDLS family CA1, and in family FTD368, we identified c.2345G>A (p.R782H), recently reported in a biopsy-proven HDLS case. Immunohistochemical examination in family FTD368 showed the typical neuronal and glial findings of HDLS. Functional analyses of CSF1R mutant p.R782H (identified in this study) and p.M875T (previously observed in HDLS), showed a similar loss of CSF1R autophosphorylation of selected tyrosine residues in the kinase domain for both mutations when compared with wild-type CSF1R. CONCLUSIONS: We provide the first genetic and mechanistic evidence that POLD and HDLS are a single clinicopathologic entity.
Resumo:
BACKGROUND: The Notch pathway is essential for proper epidermal differentiation during embryonic skin development. Moreover, skin specific loss of Notch signaling in the embryo results in skin barrier defects accompanied by a B-lymphoproliferative disease. However, much less is known about the consequences of loss of Notch signaling after birth. METHODOLOGY AND PRINCIPAL FINDINGS: To study the function of Notch signaling in the skin of adult mice, we made use of a series of conditional gene targeted mice that allow inactivation of several components of the Notch signaling pathway specifically in the skin. We demonstrate that skin-specific inactivation of Notch1 and Notch2 simultaneously, or RBP-J, induces the development of a severe form of atopic dermatitis (AD), characterized by acanthosis, spongiosis and hyperkeratosis, as well as a massive dermal infiltration of eosinophils and mast cells. Likewise, patients suffering from AD, but not psoriasis or lichen planus, have a marked reduction of Notch receptor expression in the skin. Loss of Notch in keratinocytes induces the production of thymic stromal lymphopoietin (TSLP), a cytokine deeply implicated in the pathogenesis of AD. The AD-like associated inflammation is accompanied by a myeloproliferative disorder (MPD) characterized by an increase in immature myeloid populations in the bone marrow and spleen. Transplantation studies revealed that the MPD is cell non-autonomous and caused by dramatic microenvironmental alterations. Genetic studies demontrated that G-CSF mediates the MPD as well as changes in the bone marrow microenvironment leading to osteopenia. SIGNIFICANCE: Our data demonstrate a critical role for Notch in repressing TSLP production in keratinocytes, thereby maintaining integrity of the skin and the hematopoietic system.
Resumo:
BACKGROUND: The role of adjuvant dose-intensive chemotherapy and its efficacy according to baseline features has not yet been established. PATIENTS AND METHODS: Three hundred and forty-four patients were randomized to receive seven courses of standard-dose chemotherapy (SD-CT) or three cycles of dose-intensive epirubicin and cyclophosphamide (epirubicin 200 mg/m(2) plus cyclophosphamide 4 mg/m(2) with filgrastim and progenitor cell support). All patients were assigned tamoxifen at the completion of chemotherapy. The primary end point was disease-free survival (DFS). This paper updates the results and explores patterns of recurrence according to predicting baseline features. RESULTS: At 8.3-years median follow-up, patients assigned DI-EC had a significantly better DFS compared with those assigned SD-CT [8-year DFS percent 47% and 37%, respectively, hazard ratio (HR) 0.76; 95% confidence interval 0.58-1.00; P = 0.05]. Only patients with estrogen receptor (ER)-positive disease benefited from the DI-EC (HR 0.61; 95% confidence interval 0.39, 0.95; P = 0.03). CONCLUSIONS: After prolonged follow-up, DI-EC significantly improved DFS, but the effect was observed only in patients with ER-positive disease, leading to the hypothesis that efficacy of DI-EC may relate to its endocrine effects. Further studies designed to confirm the importance of endocrine responsiveness in patients treated with dose-intensive chemotherapy are encouraged.
Resumo:
BACKGROUND: Dose intensive chemotherapy has not been tested prospectively for the treatment of gynecologic sarcomas. We investigated the antitumor activity and toxicity of high-dose ifosfamide and doxorubicin, in the context of a multidisciplinary strategy for the treatment of advanced and metastatic, not pretreated, gynecologic sarcomas. PATIENTS AND METHODS: Thirty-nine patients were enrolled onto a phase I-II multicenter trial of ifosfamide, 10 g/m2 as a continuous infusion over 5 days, plus doxorubicin intravenously, 25 mg/m2/day for 3 days with Mesna and granulocyte-colony-stimulating factor every 21 days. Salvage therapy was allowed after chemotherapy. RESULTS: Among the 37 evaluable patients, the tumor was locally advanced (n = 11), with concomitant distant metastases (n = 5) or with distant metastases only (n = 21). After a median of three (range 1-7) chemotherapy cycles, six patients experienced a complete response and 12 a partial response for an overall response rate of 49% (95% CI 32% to 66%). The response rate was higher in poorly differentiated tumors (62%) compared with moderately well differentiated ones (18%), but was not different according to histology subtypes. Eleven patients had salvage therapy, either immediately following chemotherapy (n = 7) or at time of progression (n = 4). With a median follow-up time of 5 years, the median overall survival was 30.5 months. Hematological toxicity was as expected neutropenia, thrombopenia and anemia > or = grade 3 at 50%, 34% and 33% of cycles respectively. No toxic death occurred. CONCLUSIONS: High-dose ifosfamide plus doxorubicin is an active regimen for all subtypes of gynecological sarcomas. Its toxicity was manageable in a multicentric setting. The prolonged survival might be due to the multidisciplinary strategy that was possible in one-third of the patients.
Resumo:
Haematopoietic stem cells (HSCs) in mouse bone marrow are located in specialized niches as single cells. During homeostasis, signals from this environment keep some HSCs dormant, which preserves long-term self-renewal potential, while other HSCs actively self renew to maintain haematopoiesis. In response to haematopoietic stress, dormant HSCs become activated and rapidly replenish the haematopoietic system. Interestingly, three factors - granulocyte colony-stimulating factor, interferon-alpha and arsenic trioxide - have been shown to efficiently activate dormant stem cells and thereby could break their resistance to anti-proliferative chemotherapeutics. Thus, we propose that two-step strategies could target resistant leukaemic stem cells by priming tumours with activators of dormancy followed by chemotherapy or targeted therapies.
Resumo:
We report on two elderly patients with newly diagnosed acute myeloid leukemia (AML) who were treated in palliative intention because of comorbidities and intermediate or poor risk cytogenetics. Both received G-CSF to reduce the risk of infection related to neutropenia. Interestingly, one patient achieved a full hematological remission and the other a peripheral remission with dramatic reduction of the bone marrow blast count. Although a direct therapeutic effect of myeloid growth factors seems to be unusual in AML, the use of G-CSF or GM-CSF may be recommended in patients such as elderly patients who are not suited for intensive chemotherapy.
Resumo:
Chronic inhalation of grain dust is associated with asthma and chronic bronchitis in grain worker populations. Exposure to fungal particles was postulated to be an important etiologic agent of these pathologies. Fusarium species frequently colonize grain and straw and produce a wide array of mycotoxins that impact human health, necessitating an evaluation of risk exposure by inhalation of Fusarium and its consequences on immune responses. Data showed that Fusarium culmorum is a frequent constituent of aerosols sampled during wheat harvesting in the Vaud region of Switzerland. The aim of this study was to examine cytokine/chemokine responses and innate immune sensing of F. culmorum in bone-marrow-derived dendritic cells and macrophages. Overall, dendritic cells and macrophages responded to F. culmorum spores but not to its secreted components (i.e., mycotoxins) by releasing large amounts of macrophage inflammatory protein (MIP)-1α, MIP-1β, MIP-2, monocyte chemoattractant protein (MCP)-1, RANTES, and interleukin (IL)-12p40, intermediate amounts of tumor necrosis factor (TNF), IL-6, IL-12p70, IL-33, granulocyte colony-stimulating factor (G-CSF), and interferon gamma-induced protein (IP-10), but no detectable amounts of IL-4 and IL-10, a pattern of mediators compatible with generation of Th1 or Th17 antifungal protective immune responses rather than with Th2-dependent allergic responses. The sensing of F. culmorum spores by dendritic cells required dectin-1, the main pattern recognition receptor involved in β-glucans detection, but likely not MyD88 and TRIF-dependent Toll-like receptors. Taken together, our results indicate that F. culmorum stimulates potently innate immune cells in a dectin-1-dependent manner, suggesting that inhalation of F. culmorum from grain dust may promote immune-related airway diseases in exposed worker populations.
Resumo:
Proteasome inhibitors, used in cancer treatment for their proapoptotic effects, have anti-inflammatory and antifibrotic effects on animal models of various inflammatory and fibrotic diseases. Their effects in cells from patients affected by either inflammatory or fibrotic diseases have been poorly investigated. Nasal polyposis is a chronic inflammatory disease of the sinus mucosa characterized by tissue inflammation and remodeling. We tested the hypothesis that proteasome inhibition of nasal polyp fibroblasts might reduce their proliferation and inflammatory and fibrotic response. Accordingly, we investigated the effect of the proteasome inhibitor Z-Leu-Leu-Leu-B(OH)2 (MG262) on cell viability and proliferation and on the production of collagen and inflammatory cytokines in nasal polyp and nasal mucosa fibroblasts obtained from surgery specimens. MG262 reduced the viability of nasal mucosa and polyp fibroblasts concentration- and time-dependently, with marked effects after 48 h of treatment. The proteasome inhibitor bortezomib provoked a similar effect. MG262-induced cell death involved loss of mitochondrial membrane potential, caspase-3 and poly(ADP-ribose) polymerase activation, induction of c-Jun phosphorylation, and mitogen-activated protein kinase phosphatase-1 expression. Low concentrations of MG262 provoked growth arrest, inhibited DNA replication and retinoblastoma phosphorylation, and increased expression of the cell cycle inhibitors p21 and p27. MG262 concentration-dependently inhibited basal and transforming growth factor-β-induced collagen mRNA expression and interleukin (IL)-1β-induced production of IL-6, IL-8, monocyte chemoattractant protein-1, regulated on activation normal T cell expressed and secreted, and granulocyte/macrophage colony-stimulating factor in both fibroblast types. MG262 inhibited IL-1β/tumor necrosis factor-α-induced activation of nuclear factor-κB. We conclude that noncytotoxic treatment with MG262 reduces the proliferative, fibrotic, and inflammatory response of nasal fibroblasts, whereas high MG262 concentrations induce apoptosis.
Resumo:
Proteasome inhibitors, used in cancer treatment for their proapoptotic effects, have anti-inflammatory and antifibrotic effects on animal models of various inflammatory and fibrotic diseases. Their effects in cells from patients affected by either inflammatory or fibrotic diseases have been poorly investigated. Nasal polyposis is a chronic inflammatory disease of the sinus mucosa characterized by tissue inflammation and remodeling. We tested the hypothesis that proteasome inhibition of nasal polyp fibroblasts might reduce their proliferation and inflammatory and fibrotic response. Accordingly, we investigated the effect of the proteasome inhibitor Z-Leu-Leu-Leu-B(OH)2 (MG262) on cell viability and proliferation and on the production of collagen and inflammatory cytokines in nasal polyp and nasal mucosa fibroblasts obtained from surgery specimens. MG262 reduced the viability of nasal mucosa and polyp fibroblasts concentration- and time-dependently, with marked effects after 48 h of treatment. The proteasome inhibitor bortezomib provoked a similar effect. MG262-induced cell death involved loss of mitochondrial membrane potential, caspase-3 and poly(ADP-ribose) polymerase activation, induction of c-Jun phosphorylation, and mitogen-activated protein kinase phosphatase-1 expression. Low concentrations of MG262 provoked growth arrest, inhibited DNA replication and retinoblastoma phosphorylation, and increased expression of the cell cycle inhibitors p21 and p27. MG262 concentration-dependently inhibited basal and transforming growth factor-β-induced collagen mRNA expression and interleukin (IL)-1β-induced production of IL-6, IL-8, monocyte chemoattractant protein-1, regulated on activation normal T cell expressed and secreted, and granulocyte/macrophage colony-stimulating factor in both fibroblast types. MG262 inhibited IL-1β/tumor necrosis factor-α-induced activation of nuclear factor-κB. We conclude that noncytotoxic treatment with MG262 reduces the proliferative, fibrotic, and inflammatory response of nasal fibroblasts, whereas high MG262 concentrations induce apoptosis.
Resumo:
Interactions of neurons with microglia may play a dominant role in sleep regulation. TNF may exert its somnogeneic effects by promoting attraction of microglia and their processes to the vicinity of dendrites and synapses. We found TNF to stimulate neurons (i) to produce CCL2, CCL7 and CXCL10, chemokines acting on mononuclear phagocytes and (ii) to stimulate the expression of the macrophage colony stimulating factor (M-CSF/Csf1), which leads to elongation of microglia processes. TNF may also act on neurons by affecting the expression of genes essential in sleep-wake behavior. The neuronal expression of Homer1a mRNA, increases during spontaneous and enforced periods of wakefulness. Mice with a deletion of Homer1a show a reduced wakefulness with increased non-rapid eye movement (NREM) sleep during the dark period. Recently the TNF-dependent increase of NREM sleep in the dark period of mice with CD40-induced immune activation was found to be associated with decreased expression of Homer1a. In the present study we investigated the effects of TNF and IL-1β on gene expression in cultures of the neuronal cell line HT22 and cortical neurons. TNF slightly increased the expression of Homer1a and IL-1β profoundly enhanced the expression of Early growth response 2 (Egr2). The data presented here indicate that the decreased expression of Homer1a, which was found in the dark period of mice with CD40-induced increase of NREM sleep is not due to inhibitory effects of TNF and IL-1β on the expression of Homer1a in neurons.
Resumo:
Le mélanome cutané est un des cancers les plus agressifs et dont l'incidence augmente le plus en Suisse. Une fois métastatique, le pronostic de survie moyenne avec les thérapies actuelles est d'environ huit mois, avec moins de 5% de survie à cinq ans. Les récents progrès effectués dans la compréhension de la biologie de la cellule tumorale mais surtout dans l'importance du système immunitaire dans le contrôle de ce cancer ont permis le développement de nouveaux traitements novateurs et prometteurs. Ces thérapies, appelées immunothérapies, reposent sur la stimulation et l'augmentation de la réponse immunitaire à la tumeur. Alors que les derniers essais cliniques ont démontré l'efficacité de ces traitements chez les patients avec des stades avancés de la maladie, le contrôle de la maladie à long- terme est seulement atteint chez une minorité des patients. La suppression locale et systémique de la réponse immunitaire spécifique anti-tumorale apparaitrait comme une des raisons expliquant la persistance d'un mauvais pronostic clinique chez ces patients. Des études sur les souris ont montré que les vaisseaux lymphatiques joueraient un rôle primordial dans ce processus en induisant une tolérance immune, ce qui permettrait à la tumeur d'échapper au contrôle du système immunitaire et métastatiser plus facilement. Ces excitantes découvertes n'ont pas encore été établi et prouvé chez l'homme. Dans cette thèse, nous montrons pour la première fois que les vaisseaux lymphatiques sont directement impliqués dans la modulation de la réponse immunitaire au niveau local et systémique dans le mélanome chez l'homme. Ces récentes découvertes montrent le potentiel de combiner des thérapies visant le système lymphatique avec les immunothérapies actuellement utilisées afin d'améliorer le pronostic des patients atteint du mélanome. -- Cutaneous melanoma is one of the most invasive and metastatic human cancers and causes 75% of skin cancer mortality. Current therapies such as surgery and chemotherapy fail to control metastatic disease, and relapse occurs frequently due to microscopic residual lesions. It is, thus, essential to develop and optimize novel therapeutic strategies to improve curative responses in these patients. In recent decades, tumor immunologists have revealed the development of spontaneous adaptive immune responses in melanoma patients, leading to the accumulation of highly differentiated tumor-specific T cells at the tumor site. This remains one of the most powerful prognostic markers to date. Immunotherapies that augment the natural function of these tumor-specific T cells have since emerged as highly attractive therapeutic approaches to eliminate melanoma cells. While recent clinical trials have demonstrated great progress in the treatment of advanced stage melanoma, long-term disease control is still only achieved in a minority of patients. Local and systemic immune suppression by the tumor appears to be responsible, in part, for this poor clinical evolution. These facts underscore the need for a better analysis and characterization of immune- related pathways within the tumor microenvironment (TME), as well as at the systemic level. The overall goal of this thesis is, thus, to obtain greater insight into the complexity and heterogeneity of the TME in human melanoma, as well as to investigate immune modulation beyond the TME, which ultimately influences the immune system throughout the whole body. To achieve this, we established two main objectives: to precisely characterize local and systemic immune modulation (i) in untreated melanoma patients and (ii) in patients undergoing peptide vaccination or checkpoint blockade therapy with anti-cytotoxic T- lymphocyte-asisctaed protein-4 (CTLA-4) antibody. In the first and main part of this thesis, we analyzed lymphatic vessels in relation to anti-tumor immune responses in tissues from vaccinated patients using a combination of immunohistochemistry (IHC) techniques, whole slide scanning/analysis, and an automatic quantification system. Strikingly, we found that increased lymphatic vessel density was associated with high expression of immune suppressive molecules, low functionality of tumor-infiltrating CD8+ T cells and decreased cytokine production by tumor-antigen specific CD8+ T cells in the blood. These data revealed a previously unappreciated local and systemic role of lymphangiogenesis in modulating T cell responses in human cancer and support the use of therapies that target lymphatic vessels combined with existing and future T cell based therapies. In the second objective, we describe a metastatic melanoma patient who developed pulmonary sarcoid-like granulomatosis following repetitive vaccination with peptides and CpG. We demonstrated that the onset of this pulmonary autoimmune adverse event was related to the development of a strong and long-lasting tumor-specific CD8+ T cell response. This constitutes the first demonstration that a new generation tumor vaccine can induce the development of autoimmune adverse events. In the third objective, we assessed the use of Fourier Transform Infrared (FTIR) imaging to identify melanoma cells and lymphocyte subpopulations in lymph node (LN) metastasis tissues, thanks to a fruitful collaboration with researchers in Brussels. We demonstrated that the different cell types in metastatic LNs have different infrared spectral features allowing automated identification of these cells. This technic is therefore capable of distinguishing known and novel biological features in human tissues and has, therefore, significant potential as a tool for histopathological diagnosis and biomarker assessment. Finally, in the fourth objective, we investigated the role of colony- stimulating factor-1 (CSF-1) in modulating the anti-tumor response in ipilimumab-treated patients using IHC and in vitro co-cultures, revealing that melanoma cells produce CSF-1 via CTL-derived cytokines when attacked by cytotoxic T lymphocytes (CTLs), resulting in the recruitment of immunosuppressive monocytes. These findings support the combined use of CSF-1R blockade with T cell based immunotherapy for melanoma patients. Taken together, our results reveal the existence of novel mechanisms of immune modulation and thus promote the optimization of combination immunotherapies against melanoma. -- Le mélanome cutané est un des cancers humains les plus invasifs et métastatiques et est responsable de 75% de la mortalité liée aux cancers de la peau. Les thérapies comme la chirurgie et la chimiothérapie ont échoué à contrôler le mélanome métastatique, par ailleurs les rechutes sous ces traitements ont été montrées fréquentes. Il est donc essentiel de développer et d'optimiser de nouvelles stratégies thérapeutiques pour améliorer les réponses thérapeutiques de ces patients. Durant les dernières décennies, les immunologistes spécialisés dans les tumeurs ont démontré qu'un patient atteint du mélanome pouvait développer spontanément une réponse immune adaptative à sa tumeur et que l'accumulation de cellules T spécifiques tumorales au sein même de la tumeur était un des plus puissants facteurs pronostiques. Les immunothérapies qui ont pour but d'augmenter les fonctions naturelles de ces cellules T spécifiques tumorales ont donc émergé comme des approches thérapeutiques très attractives pour éliminer les cellules du mélanome. Alors que les derniers essais cliniques ont démontré un progrès important dans le traitement des formes avancées du mélanome, le contrôle de la maladie à long-terme est seulement atteint chez une minorité des patients. La suppression immune locale et systémique apparaitrait comme une des raisons expliquant la persistance d'un mauvais pronostic clinique chez ces patients. Ces considérations soulignent la nécessité de mieux analyser et caractériser les voies immunitaires non seulement au niveau local dans le microenvironement tumoral mais aussi au niveau systémique dans le sang des patients. Le but de cette thèse est d'obtenir une plus grande connaissance de la complexité et de l'hétérogénéité du microenvironement tumoral dans les mélanomes mais aussi d'investiguer la modulation immunitaire au delà du microenvironement tumoral au niveau systémique. Afin d'atteindre ce but, nous avons établi deux objectifs principaux : caractériser précisément la modulation locale et systémique du système immunitaire (i) chez les patients atteints du mélanome qui n'ont pas reçu de traitement et (ii) chez les patients qui ont été traités soit par des vaccins soit par des thérapies qui bloquent les points de contrôles. Dans la première et majeure partie de cette thèse, nous avons analysé les vaisseaux lymphatiques en relation avec la réponse immunitaire anti-tumorale dans les tissus des patients vaccinés grâce à des techniques d'immunohistochimie et de quantification informatisé et automatique des marquages. Nous avons trouvé qu'une densité élevée de vaisseaux lymphatiques dans la tumeur était associée à une plus grande expression de molécules immunosuppressives ainsi qu'à une diminution de la fonctionnalité des cellules T spécifiques tumoral dans la tumeur et dans le sang des patients. Ces résultats révèlent un rôle jusqu'à là inconnu des vaisseaux lymphatiques dans la modulation directe du système immunitaire au niveau local et systémique dans les cancers de l'homme. Cette recherche apporte finalement des preuves du potentiel de combiner des thérapies visant le système lymphatique avec des autres immunothérapies déjà utilisées en clinique. Dans le second objectif, nous rapportons le cas d'un patient atteint d'un mélanome avec de multiples métastases qui a développé à la suite de plusieurs vaccinations répétées et consécutives avec des peptides et du CpG, un évènement indésirable sous la forme d'une granulomatose pulmonaire sarcoid-like. Nous avons démontré que l'apparition de cet évènement était intimement liée au développement d'une réponse immunitaire durable et spécifique contre les antigènes de la tumeur. Par là- même, nous prouvons pour la première fois que la nouvelle génération de vaccins est aussi capable d'induire des effets indésirables auto-immuns. Pour le troisième objectif, nous avons voulu savoir si l'utilisation de la spectroscopie infrarouge à transformée de Fourier (IRTF) était capable d'identifier les cellules du mélanome ainsi que les différents sous-types cellulaires dans les ganglions métastatiques. Grâce à nos collaborateurs de Bruxelles, nous avons pu établir que les diverses composantes cellulaires des ganglions atteints par des métastases du mélanome présentaient des spectres infrarouges différents et qu'elles pouvaient être identifiées d'une façon automatique. Cette nouvelle technique permettrait donc de distinguer des caractéristiques biologiques connues ou nouvelles dans les tissus humains qui auraient des retombées pratiques importantes dans le diagnostic histopathologique et dans l'évaluation des biomarqueurs. Finalement dans le dernier objectif, nous avons investigué le rôle du facteur de stimulation des colonies (CSF-1) dans la modulation de la réponse immunitaire anti-tumorale chez les patients qui ont été traités par l'Ipilimumab. Nos expériences in vivo au niveau des tissus tumoraux et nos co-cultures in vitro nous ont permis de démontrer que les cytokines secrétées par les cellules T spécifiques anti-tumorales induisaient la sécrétion de CSF-1 dans les cellules du mélanome ce qui résultait en un recrutement de monocytes immunosuppresseurs. Dans son ensemble, cette thèse révèle donc l'existence de nouveaux mécanismes de modulation de la réponse immunitaire anti-tumorale et propose de nouvelles optimisations de combinaison d'immunothérapies contre le mélanome.
Resumo:
Background. Multiple myeloma (MM) is the second most common hematologic malignancy after lymphomas In Finland: the annual incidence of MM is approximately 200. For three decades the median survival remained at 3 to 4 years from diagnosis until high-dose melphalan treatment supported by autologous stem cell transplantation (ASCT) became the standard of care for newly diagnosed MM since the mid 1990’s and the median survival increased to 5 – 6 years. This study focuses on three important aspects of ASCT, namely 1) stem cell mobilization, 2) single vs. double ASCT as initial treatment, and 3) the role of minimal residual disease (MRD) for longterm outcome. Aim. The aim of this series of studies was to evaluate the outcomes of MM patients and the ASCT procedure at the Turku University Central Hospital, Finland. First, we tried to identify which factors predict unsuccessful mobilization of autologous stem cells. Second, we compared the use of short-acting granulocyte-colony stimulating factor (GCSF) with long-acting G-CSF as mobilization agents. Third, one and two successive ASCTs were compared in 100 patients with MM. Fourth, for patients in complete response (CR) after stem cell transplantation (SCT), patient-specific probes for quantitative allele-specific oligonucleotide polymerase-chain reaction (qASO-PCR) measurements were designed to evaluate MRD and its importance for long-term outcome. Results. The quantity of previous chemotherapy and previous interferon use were significant pre-mobilization factors that predicted mobilization failure, together with some factors related to mobilization therapy itself, such as duration and degree of cytopenias and occurrence of sepsis. Short-acting and long-acting G-CSF combined with chemotherapy were comparable as stem cells mobilizers. The progression free (PFS) and overall survival (OS) tended to be longer after double ASCT than after single ASCT with a median follow-up time of 4 years, but this difference disappeared as the follow-up time increased. qASO-PCR was a good and sensitive divider of the CR patients into two prognostic groups: MRD low/negative (≤ 0.01%) and MRD high (>0.01%) groups with a significant difference in PFS and suggestively also in OS. Conclusions. When the factors prediciting a poor outcome of stem cell mobilization prevail, it is possible to identify those patients who need specific efforts to maximize the mobilization efficacy. Long-acting pegfilgrastim is a practical and effective alternative to short-acting filgrastim for mobilization therapy. There is no need to perform double ASCT on all eligible patients. MRD assessment with qASO-PCR is a sensitive method for evaluation of the depth of the CR response and can be used to predict long-term outcome after ACST.
Resumo:
Transplantation of mobilized peripheral blood stem cells (PBSC) for rescue of bone marrow function after high-dose chemo-/radiotherapy is widely used in hematologic malignancies and solid tumors. Mobilization of stem cells to the peripheral blood can be achieved by cytokine treatment of the patients. The main advantage of autologous PBSC transplantation over bone marrow transplantation is the faster recovery of neutrophil and platelet counts. The threshold number of PBSC required for adequate rescue of bone marrow is thought to be about 2 x 106 CD34+ cells/kg, if the stem cells are collected by leukapheresis and subsequently cryopreserved. We show that this critical number could be further reduced to as few as 0.2 x 106 cells/kg. In 30 patients with multiple myeloma and 25 patients with bad risk lymphoma 1 liter of granulocyte colony-stimulating factor (G-CSF)-mobilized unprocessed whole blood (stored at 4oC for 1-3 days) was used for transplantation. Compared to a historical control group, a significant reduction in the duration of neutropenia, thrombocytopenia and the length of hospital stay was documented. Furthermore, the effect of stem cell support was reflected by a lower need for platelet and red cell transfusions and a reduced antibiotic use. Considering the data as a whole, a cost saving of about 50% was achieved. To date, this easy to perform method of transplantation is only feasible following high-dose therapies that are completed within 72 h, since longer storage of unprocessed blood is accompanied by a substantial loss of progenitor cell function. Ongoing investigations include attempts to prolong storage times for whole blood
Resumo:
The analysis of chromosomal abnormalities is important for the study of hematological neoplastic disorders since it facilitates classification of the disease. The ability to perform chromosome analysis of cryopreserved malignant marrow or peripheral blast cells is important for retrospective studies. In the present study, we compared the karyotype of fresh bone marrow cells (20 metaphases) to that of cells stored with a simplified cryopreservation method, evaluated the effect of the use of granulocyte-macrophage colony-stimulating factor (GM-CSF) as an in vitro mitotic index stimulator, and compared the cell viability and chromosome morphology of fresh and cryopreserved cells whenever possible (sufficient metaphases for analysis). Twenty-five bone marrow samples from 24 patients with hematological disorders such as acute myeloid leukemia, acute lymphoblastic leukemia, myelodysplastic syndrome, chronic myeloid leukemia, megaloblastic anemia and lymphoma (8, 3, 3, 8, 1, and 1 patients, respectively) were selected at diagnosis, at relapse or during routine follow-up and one sample was obtained from a bone marrow donor after informed consent. Average cell viability before and after freezing was 98.8 and 78.5%, respectively (P < 0.05). Cytogenetic analysis was successful in 76% of fresh cell cultures, as opposed to 52% of cryopreserved samples (P < 0.05). GM-CSF had no proliferative effect before or after freezing. The morphological aspects of the chromosomes in fresh and cryopreserved cells were subjectively the same. The present study shows that cytogenetic analysis of cryopreserved bone marrow cells can be a reliable alternative when fresh cell analysis cannot be done, notwithstanding the reduced viability and lower percent of successful analysis that are associated with freezing.