944 resultados para Colonization, Agricultural.
Resumo:
The objective of the current report produced for the CGIAR Research Program on Aquatic Agricultural Systems (AAS) is to provide basic information on key constraints driving poverty and vulnerability in aquatic agricultural systems in the Tonle Sap region in Cambodia. Six objectives and corresponding research themes are included in the program: sustainable increases in productivity; equitable access to markets; resilience and adaptive capacity; empowering policies and institutions; reduced gender disparity; and expanded benefits for the resource-poor. In this report, the authors review the main aquatic agricultural systems (status, specific policies and strategies, interventions, challenges, and options), then review the main drivers of change. This leads to an identification of plans and strategies important to AAS, with a particular focus on perspectives, gaps and opportunities in national policies, community engagement, increased benefits, adaptive capacity, and gender. This review, of potential interest to decision makers and all development partners, leads to conclusions and recommendations aimed at policymakers and institutional as well as private investors in development.
Resumo:
This paper presents data and findings from focus group discussions in study communities selected by the CGIAR Research Program on Aquatic Agricultural Systems (AAS) in the Western Province of Zambia. The discussions focused on cultivated crops and vegetables collected from open fields and consumed as food. Participatory tools for agricultural biodiversity (agrobiodiversity) assessment were used to capture community perspectives on plant species and varietal diversity; factors influencing the availability and use of plants for food; unique, common and rare crop species cultivated in a community, identified through a four-cell analysis methodology; and core problems, root causes, effects and necessary actions to tackle them, using problem tree or situation analysis methods.
Resumo:
This working paper aims to synthesize and share learning from the experience of adapting and operationalizing the Research in Development(RinD) approach to agricultural research in the five hubs under the The CGIAR Research Program on Aquatic Agricultural Systems. It seeks to share learning about how the approach is working in context and to explore the outcomes it is achieving through initial implementation over 3 ½ years. This learning can inform continuation of agricultural research in the second phase of the CGIAR research programs and will be useful to others aiming to implement research programs that seek to equitably build capacity to innovate in complex social-ecological systems. Each of the chapters in this working paper have shown that RinD has produced a range of outcomes that were often unexpected and broader in scope than might result from other approaches to agricultural research. RinD also produces innovations, and there is evidence that it builds capacity to innovate.
Resumo:
The annual report presents research programs carried out by the institute during the reporting period. FIRRI has the mandate is to promote, undertake and coordinate all aspects of research in fisheries, fish production systems and the water environment, aquaculture and socio-economics while conserving the natural resource.
Resumo:
The annual report present activities carried out by the different organizations that make up the East African Agricultural & Fisheries Research Council which covers reports from the following Organisations: I. Report of the East African Agriculture and Forestry Research Organization 2. Report of the East African Fishery Research Organization 3. Report of the East African Marine Fisheries Research Organization 4. Report of the East African Trypanosomiasis Research Organization 5. Report of the East African Veterinary Research Organization The activities reported are for the period 1958
Resumo:
The annual report present activities carried out by the different organizations that make up the East African Agricultural & Fisheries Research Council which included: 1. Report of the East African Agriculture & Forestry Research Organization 2. Report of the East African Veterinary Research Organization 3. Report of the East African Fishery Research Organization 4. Report of the East African Marine Fisheries Research Organization The activities reported are for the period 1954-55.
Resumo:
The annual report present activities carried out by the different organizations that make up the East African Agricultural & Fisheries Research Council which included: 1. Report of the East African Agriculture & Forestry Research Organization 2. Report of the East African Veterinary Research Organization 3. Report of the East African Fishery Research Organization 4. Report of the East African Marine Fisheries Research Organization and 5. Report of the East African Trypanosomiasis Research Organisation. The activities reported are for the period 1955-56.
Resumo:
The annual report present activities carried out by the different organizations that make up the East African Agricultural & Fisheries Research Council which covers reports from the following Organisations: I. Report of the East African Agriculture and Forestry Research Organization 2. Report of the East African Fishery Research Organization 3. Report of the East African Marine Fisheries Research Organization 4. Report of the East African Trypanosomiasis Research Organization and 5. Report of the East African Veterinary Research Organization The activities reported are for the period 1956-57
Resumo:
The CGIAR Research Program on Aquatic Agricultural Systems (AAS) is collaborating with partners to develop and implement a foresight-based engagement with diverse stakeholders linked to aquatic agricultural systems. The program’s aim is to understand the implications of current drivers of change for fish agri-food systems, and consequently food and nutrition security, in Africa, Asia and the Pacific. Partners include the Global Forum on Agricultural Research (GFAR), the Forum for Agricultural Research in Africa (FARA) and the African Union’s New Partnership for Africa’s Development (AU-NEPAD). A key part of the program was a participatory scenario-building workshop held in July 2015 under the theme of "futures of aquatic agricultural systems and implications for fish agri-food systems in southern Africa." The objectives for the workshop were (i) to engage local stakeholders in exploring plausible futures of aquatic agricultural systems, and (ii) to broker and catalyze collaborative plans of action based on the foresight analysis. This report presents technical findings from the workshop. The CGIAR Research Program on Aquatic Agricultural Systems (AAS) is collaborating with partners to develop and implement a foresight-based engagement with diverse stakeholders linked to aquatic agricultural systems. The program’s aim is to understand the implications of current drivers of change for fish agri-food systems, and consequently food and nutrition security, in Africa, Asia and the Pacific. Partners include the Global Forum on Agricultural Research (GFAR), the Forum for Agricultural Research in Africa (FARA) and the African Union’s New Partnership for Africa’s Development (AU-NEPAD). A key part of the program was a participatory scenario-building workshop held in July 2015 under the theme of "futures of aquatic agricultural systems and implications for fish agri-food systems in southern Africa." The objectives for the workshop were (i) to engage local stakeholders in exploring plausible futures of aquatic agricultural systems, and (ii) to broker and catalyze collaborative plans of action based on the foresight analysis. This report presents technical findings from the workshop.
Resumo:
Although there have been great advances in our understanding of the bacterial cytoskeleton, major gaps remain in our knowledge of its importance to virulence. In this study we have explored the contribution of the bacterial cytoskeleton to the ability of Salmonella to express and assemble virulence factors and cause disease. The bacterial actin-like protein MreB polymerises into helical filaments and interacts with other cytoskeletal elements including MreC to control cell-shape. As mreB appears to be an essential gene, we have constructed a viable ΔmreC depletion mutant in Salmonella. Using a broad range of independent biochemical, fluorescence and phenotypic screens we provide evidence that the Salmonella pathogenicity island-1 type three secretion system (SPI1-T3SS) and flagella systems are down-regulated in the absence of MreC. In contrast the SPI-2 T3SS appears to remain functional. The phenotypes have been further validated using a chemical genetic approach to disrupt the functionality of MreB. Although the fitness of ΔmreC is reduced in vivo, we observed that this defect does not completely abrogate the ability of Salmonella to cause disease systemically. By forcing on expression of flagella and SPI-1 T3SS in trans with the master regulators FlhDC and HilA, it is clear that the cytoskeleton is dispensable for the assembly of these structures but essential for their expression. As two-component systems are involved in sensing and adapting to environmental and cell surface signals, we have constructed and screened a panel of such mutants and identified the sensor kinase RcsC as a key phenotypic regulator in ΔmreC. Further genetic analysis revealed the importance of the Rcs two-component system in modulating the expression of these virulence factors. Collectively, these results suggest that expression of virulence genes might be directly coordinated with cytoskeletal integrity, and this regulation is mediated by the two-component system sensor kinase RcsC.
Resumo:
An understanding of how pathogens colonize their hosts is crucial for the rational design of vaccines or therapy. While the molecular factors facilitating the invasion and systemic infection by pathogens are a central focus of research in microbiology, the population biological aspects of colonization are still poorly understood. Here, we investigated the early colonization dynamics of Salmonella enterica subspecies 1 serovar Typhimurium (S. Tm) in the streptomycin mouse model for diarrhea. We focused on the first step on the way to systemic infection - the colonization of the cecal lymph node (cLN) from the gut - and studied roles of inflammation, dendritic cells and innate immune effectors in the colonization process. To this end, we inoculated mice with mixtures of seven wild type isogenic tagged strains (WITS) of S. Tm. The experimental data were analyzed with a newly developed mathematical model describing the stochastic immigration, replication and clearance of bacteria in the cLN. We estimated that in the beginning of infection only 300 bacterial cells arrive in the cLN per day. We further found that inflammation decreases the net replication rate in the cLN by 23%. In ccr7-/- mice, in which dendritic cell movement is impaired, the bacterial migration rate was reduced 10-fold. In contrast, cybb-/- mice that cannot generate toxic reactive oxygen species displayed a 4-fold higher migration rate from gut to cLN than wild type mice. Thus, combining infections with mixed inocula of barcoded strains and mathematical analysis represents a powerful method for disentangling immigration into the cLN from replication in this compartment. The estimated parameters provide an important baseline to assess and predict the efficacy of interventions. © 2013 Kaiser et al.
Resumo:
We investigated the kinetics of hot liquid water (HLW) hydrolysis over a 60-min period using a self-designed setup. The reaction was performed within the range 160-220 °C, under reaction conditions of 4.0 MPa, a 1:20 solid:liquid ratio (g/mL), at 500 rpm stirring speed. Xylan was chosen as a model compound for hemicelluloses, and two kinds of agricultural wastes-rice straw and palm shell-were used as typical feedstocks representative of herbaceous and woody biomasses, respectively. The hydrolysis reactions for the three kinds of materials followed a first-order sequential kinetic model, and the hydrolysis activation energies were 65.58 kJ/mol for xylan, 68.76 kJ/mol for rice straw, and 95.19 kJ/mol for palm shell. The activation energies of sugar degradation were 147.21 kJ/mol for xylan, 47.08 kJ/mol for rice straw and 79.74 kJ/mol for palm shell. These differences may be due to differences in the composition and construction of the three kinds of materials. In order to reduce the decomposition of sugars, the hydrolysis time of biomasses such as rice straw and palm shell should be strictly controlled.