433 resultados para Colletotrichum musae
Resumo:
The biosorption of Cd(II) and Pb(II) ions on biomass and exopolysaccharide (EPS) produced by Colletotrichum sp. fungus has been investigated as a function of contact time, initial pH, initial metal ion concentration, and initial adsorbent concentration in a batch system. Adsorption equilibrium was described by Freundlich and Langmuir isotherms. Adsorption was characterized through granulometry, SEM and EDX analysis. Then, studies were performed to regenerate the adsorbent. Biosorption of metals by biomass and EPS were best described by the Langmuir and Freundlich isotherm, respectively. Results of thermodynamic investigations showed that adsorption reactions were spontaneous (ΔG° < 0), exothermal, and mainly physical. The EPS was able to remove 79 and 98% of cadmium and lead, respectively, and the biomass removed 85 and 84% of cadmium and lead, respectively, in a solution with initial concentration 100 mg L-1, and the four adsorption-desorption cycles of all adsorbents showed up with great regenerative capacity and relative stability after these four cycles, the high potential of these biological materials in sorption has been shown. © 2013 Copyright Balaban Desalination Publications.
Resumo:
The aim of the present study was to analyse the genetic and pathogenic variability of Colletotrichum spp. isolates from various organs and cultivars of mango with anthracnose symptoms, collected from different municipalities of São Paulo State, Brazil. Colletotrichum gloeosporioides isolates from symptomless citrus leaves and C. acutatum isolates from citrus flowers with post-bloom fruit drop symptoms were included as controls. Sequencing of the ITS region allowed the identification of 183 C. gloeosporioides isolates from mango; only one isolate was identified as C. acutatum. amova analysis of ITS sequences showed larger genetic variability among isolates from the same municipality than among those from different populations. fAFLP markers indicated high levels of genetic variability among the C. gloeosporioides isolates from mango and no correlation between genetic variability and isolate source. Only one C. gloeosporioides mango isolate had the same genotype as the C. gloeosporioides isolates from citrus leaves, as determined by ITS sequencing and fAFLP analysis. Pathogenicity tests revealed that C. gloeosporioides and C. acutatum isolates from either mango or citrus can cause anthracnose symptoms on leaves of mango cvs Palmer and Tommy Atkins and blossom blight symptoms in citrus flowers. These outcomes indicate a lack of host specificity of the Colletotrichum species and suggest the possibility of host migration. © 2012 British Society for Plant Pathology.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Agronomia (Produção Vegetal) - FCAV
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Agronomia (Proteção de Plantas) - FCA
Resumo:
Pós-graduação em Agronomia (Proteção de Plantas) - FCA
Resumo:
Yellow Sigatoka leaf spot, caused by Pseudocercospora musae (Mycosphaerella musicola), is one of main threats to banana production around the world. However, information regarding the infection process of P. musae and the influence of mineral nutrition on the disease severity could help with cultural control strategies and increase the fruit yield. Therefore, this work aimed to characterize the infectious process of P. musae in banana leaves, to study the effect of silicon (Si) and the interaction between potassium (K) and calcium (Ca) on the Yellow Sigatoka leaf spot severity. In the first study, samples were inoculated on the abaxial leaf surface with P. musae and analyzed at 12, 24, 36, 48, 72, 96, 120, 144, and 168 hours after inoculation (HAI) as well as 36 and 50 days after inoculation (DAI). The conidia germinated between 24 and 36 HAI and penetrated through the stomata between 96 and 120 HAI, or usually from 144 HAI. P. musae colonized intercellularly the spongy parenchyma at 36 DAI and inter- and intracellularly the palisade parenchyma at 50 DAI. The sporulation occurred at 50 DAI on the adaxial leaf surfaces. In the second study, banana plants grown in nutrient solution with 0; 0.5; 1.0; 1.8 and 3.6 mmol L -1 of silicic acid (H 4SiO 4) were inoculated with conidial suspension. The disease severity was assessed and data were integrated in the area under the disease severity progress curve (AUDSPC). The lower AUDSPC was 49.27% for the concentration of 3.05 mmol L -1 of H 4SiO 4 compared to plants grown without Si addition. Regarding silicon accumulation, at 3.6 mmol L -1 H4SiO 4, leaf Si content was 23.53% higher compared to the control. In the third study, plants grown in nutrient solution with 5 K concentrations (1, 2, 4, 6, and, 8 mmol L -1 ) combined with 5 Ca concentrations (1, 3, 5, 7, and, 9 mmol L -1 ), forming 25 treatments, were inoculated with conidial suspension. The disease severity was assessed and the data were integrated in the AUDSPC. There was no interaction between concentrations of K and Ca for AUDSPC, although the AUDSPC increased with the increase of K concentrations from 1 to 6 mmol L -1 . The K increase led to a reduction in chlorophyll a and b contents and in the N, P, Mg, B, Cu, Zn, and, Mn nutrients as well as increased the total plant dry weight.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)