880 resultados para Collagen fibres
Resumo:
Extracellular matrix (ECM) components such as fibrillar collagens play a fundamental role in wound repair and have also been studied in association with the gastric ulcer healing process in gastroenterology. Nevertheless, there have been no studies in the literature to date regarding the description and characterization of ECM components, neither in normal nor in injured gastric tissue of primate species. The objective of this study was to investigate the expression of gastric collagen types I, III, and IV in marmosets (Callithrix sp.). Histological specimens from the stomach of 6 Callithrix jacchus, 12 C. kuhli, and 12 C. geoffroyi were evaluated. The specimens were immunostained with anti-types I and III collagen polyclonal antibodies and anti-type IV collagen monoclonal antibody. Collagen types I and III were detected in the submucosa and lamina propria between the mucosal glands while collagen type IV was detected in the muscularis mucosae, muscular layers, blood vessels, and gastric mucosa between the mucosal glands. It is hoped that these findings can contribute to future studies on the gastric extracellular matrix components in primates and to comparative studies in the area of gastroenterology.
Resumo:
The collagen structure of isolated and in situ liver granuloma from Swiss Webster mice infected with Schistosoma mansoni was sequentially and three-dimensionally analyzed during different times of infection (early acute, acute, transitional acute-chronic, and chronic phases) by laser scanning confocal microscopy and electron scanning variable vacuum microscopy. The initial granuloma structure is characterized by vascular collagen residues and by anchorage points (or fiber radiation centers), from where collagenous fibers are angularly shed and self-assembled. During the exudative-productive stage, the self-assembly of these fibers minimizes energy and mass through continuous tension and focal compression. The curvature or angles between collagen fibers probably depends on the fibroblastic or myofibroblastic organization of stress fibers. Gradually, the loose unstable lattice of the exudative-productive stage transforms into a highly packed and stable architecture as a result of progressive compactness. The three-dimensional architecture of granulomas provides increased tissue integrity, efficient distribution of soluble compounds and a haptotactic background to the cells.
Resumo:
Osteoporosis is a multifactorial disease with great impact on morbidity and mortality mainly in postmenopausal women. Although it is recognized that factors related to life-style and habits may influence bone mass formation leading to greater or lower bone mass, more than 85% of the variation in bone mineral density (BMD) is genetically determined. The collagen type I alpha 1 (COLIA1) gene is a possible risk factor for osteoporosis. We studied a population of 220 young women from the city of São Paulo, Brazil, with respect to BMD and its correlation with both COLIA1 genotype and clinical aspects. The distribution of COLIA1 genotype SS, Ss and ss in the population studied was 73.6, 24.1 and 2.3%, respectively. No association between these genotypes and femoral or lumbar spine BMD was detected. There was a positive association between lumbar spine BMD and weight (P<0.0001), height (P<0.0156), and body mass index (BMI) (P<0.0156), and a negative association with age at menarche (P<0.0026). There was also a positive association between femoral BMD and weight (P<0.0001), height (P<0.0001), and BMI (P<0.0001), and a negative correlation with family history for osteoporosis (P<0.041). There was no association between the presence of allele s and reduced BMD. We conclude that a family history of osteoporosis and age at menarche are factors that may influence bone mass in our population.
Resumo:
Nascent procollagen peptides and other secretory proteins are transported across the endoplasmic reticulum (ER) membrane through a protein-conducting channel called translocon. Sec61alpha, a multispanning membrane translocon protein, has been implicated as being essential for translocation of polypeptide chains into the cisterns of the ER. Sec61alpha forms a protein complex with collagen and Hsp47, an ER-resident heat shock protein that binds specifically to collagen. However, it is not known whether Sec61alpha is ubiquitously produced in collagen-producing F9 teratocarcinoma cells or under heat shock treatment. Furthermore, the production and utilization of Sec61alpha may depend on the stage of cell differentiation. Cultured F9 teratocarcinoma cells are capable of differentiation in response to low concentrations of retinoic acid. This differentiation results in loss of tumorigenicity. Mouse F9 cells were grown in culture medium at 37ºC and 43ºC (heat shock treatment) treated or not with retinoic acid, and labeled in certain instances with 35S-methionine. Membrane-bound polysomes of procollagen IV were then isolated. Immunoprecipitation and Western blot analysis were performed using polyclonal antibodies against collagen IV, Hsp47 and Sec61alpha. Under retinoic acid-untreated conditions, F9 cells produced undetectable amounts of Sec61alpha. Sec61alpha, Hsp47 and type IV collagen levels were increased after retinoic acid treatment. Heat shock treatment did not alter Sec61alpha levels, suggesting that Sec61alpha production is probably not affected by heat shock. These data indicate that the enhanced production of Sec61alpha in retinoic acid-induced F9 teratocarcinoma cells parallels the increased synthesis of Hsp47 and collagen type IV.
Resumo:
Changes in the structural and functional properties of collagen caused by advanced glycation might be of importance for the etiology of late complications in diabetes. The present study was undertaken to investigate the influence of oral administration of aqueous pod extract (200 mg/kg body weight) of Phaseolus vulgaris, an indigenous plant used in Ayurvedic Medicine in India, on collagen content and characteristics in the tail tendon of streptozotocin-diabetic rats. In diabetic rats, collagen content (117.01 ± 6.84 mg/100 mg tissue) as well as its degree of cross-linking was increased, as shown by increased extent of glycation (21.70 ± 0.90 µg glucose/mg collagen), collagen-linked fluorescence (52.8 ± 3.0 AU/µmol hydroxyproline), shrinkage temperature (71.50 ± 2.50ºC) and decreased acid (1.878 ± 0.062 mg hydroxyproline/100 mg tissue) and pepsin solubility (1.77 ± 0.080 mg hydroxyproline/100 mg tissue). The alpha/ß ratio of acid- (1.69) and pepsin-soluble (2.00) collagen was significantly decreased in streptozotocin-diabetic rats. Administration of P. vulgaris for 45 days to streptozotocin-diabetic rats significantly reduced the accumulation and cross-linking of collagen. The effect of P. vulgaris was compared with that of glibenclamide, a reference drug administered to streptozotocin-diabetic rats at the dose of 600 µg/kg body weight for 45 days by gavage. The effects of P. vulgaris (collagen content, 64.18 ± 1.97; extent of glycation, 12.00 ± 0.53; collagen-linked fluorescence, 33.6 ± 1.9; shrinkage temperature, 57.0 ± 1.0; extent of cross-linking - acid-soluble collagen, 2.572 ± 0.080, and pepsin-soluble collagen, 2.28 ± 0.112) were comparable with those of glibenclamide (collagen content, 71.5 ± 2.04; extent of glycation, 13.00 ± 0.60; collagen-linked fluorescence, 38.9 ± 2.0; shrinkage temperature, 59.0 ± 1.5; extent of cross-linking - acid-soluble collagen, 2.463 ± 0.078, and pepsin-soluble collagen, 2.17 ± 0.104). In conclusion, administration of P. vulgaris pods had a positive influence on the content of collagen and its properties in streptozotocin-diabetic rats.
Resumo:
Hepatic fibrosis in patients with non-alcoholic fatty liver disease is associated with progression of the disease. In the present study, we analyzed the discriminative ability of serum laminin, type IV collagen and hyaluronan levels to predict the presence of fibrosis in these patients. In this preliminary report, we studied 30 overweight patients divided into two groups according to the absence (group I, N = 19) or presence (group II, N = 11) of fibrosis in a liver biopsy. Triglycerides, aspartate aminotransferase, alanine aminotransferase, gamma-glutamyltranspeptidade, hyaluronan (noncompetitive fluoroassay), type IV collagen, and laminin (ELISA) were determined. Group II presented significantly higher mean laminin, hyaluronan, type IV collagen, and aspartate aminotransferase values, which were due to the correlation between these parameters and the stage of fibrosis in the biopsy (Spearman's correlation coefficient, rS = 0.65, 0.62, 0.53, and 0.49, respectively). Analysis of the ROC curve showed that laminin values >282 ng/ml were those with the best diagnostic performance, with 87% accuracy. Association of laminin with type IV collagen showed improvement in the positive predictive value (100%), but with reduction in diagnostic sensitivity (64%). When compared with the criteria of Ratziu et al. [Gastroenterology (2000) 118: 1117-1123] for the diagnosis of septal fibrosis, laminin values presented a better diagnostic accuracy (83 vs 70%). Determination of extracellular matrix components in serum, especially of laminin, may identify patients with non-alcoholic fatty liver disease and fibrosis and these components may be used as indicators for liver biopsy in these patients.
Resumo:
Cardiac interstitial fibrosis may contribute to ventricular dysfunction and the prognosis of patients with dilated cardiomyopathy. The objective of the present study was to determine if total myocardial collagen content and collagen type III/I (III/I ratio) mRNAs differ in hypertensive, alcoholic, and idiopathic dilated cardiomyopathy subjects. Echocardiography and exercise cardiopulmonary testing were performed in patients with idiopathic (N = 22), hypertensive (N = 12), and alcoholic (N = 11) dilated cardiomyopathy. Morphometric analysis of collagen was performed in fragments obtained by endomyocardial biopsy with picrosirius red staining. The collagen III/I ratio was determined by reverse transcription polymerase chain reaction. Samples of controls (N = 10) were obtained from autopsy. Echocardiographic variables and maximal oxygen uptake were not different among dilated cardiomyopathy groups. Collagen was higher in all dilated cardiomyopathy groups (idiopathic, hypertensive and alcoholic, 7.36 ± 1.09%) versus controls (1.12 ± 0.18%), P < 0.05. Collagen was lower in idiopathic dilated cardiomyopathy (4.97 ± 0.83%) than hypertensive (8.50 ± 1.11%) and alcoholic (10.77 ± 2.09%) samples (P < 0.005 for both). The collagen III/I ratio in all samples from dilated cardiomyopathy patients was higher compared to that in controls (0.29 ± 0.04, P < 0.05) but was the same in the samples from idiopathic (0.77 ± 0.07), hypertensive (0.75 ± 0.07), and alcoholic (0.81 ± 0.16) dilated cardiomyopathy groups. Because of the different physical properties of the types of collagen, the higher III/I ratio may contribute to progressive ventricular dilation and dysfunction in dilated cardiomyopathy patients.
Resumo:
Acute renal failure (ARF) is a frequent complication of Gram-negative sepsis, with a high risk of mortality. Lipopolysaccharide (LPS)-induced ARF is associated with hemodynamic changes that are strongly influenced by the overproduction of nitric oxide (NO) through the cytokine-mediated up-regulation of inducible NO synthase. LPS-induced reductions in systemic vascular resistance paradoxically culminate in renal vasoconstriction. Collagen XVIII is an important component of the extracellular matrix expressed in basement membranes. Its degradation by matrix metalloproteases, cathepsins and elastases results in the formation of endostatin, claimed to have antiangiogenic activity and to be a prominent vasorelaxing agent. We evaluated the expression of endostatin/collagen XVIII in an endotoxemic ARF model. ARF was induced in C57BL/6 mice by intraperitoneal injection of LPS (10 mg/kg) followed by sacrifice 4 and 12 h later. Kidney tissue was the source of RNA and protein and the subject of histological analysis. As early as 4 h after LPS administration, blood urea, creatinine and NO levels were significantly increased compared to control. Endostatin/collagen XVIII mRNA levels were 0.71 times lower than sham-inoculated mice 4 h after LPS inoculation, returning to normal levels 12 h after LPS inoculation. Immunohistological examination revealed that acute injury caused by LPS leads to an increase of endostatin basement membrane staining in association with the decrease of CD31 endothelial basement membrane staining. These results indicate that in the early phase of endotoxemic ARF the endostatin levels were not regulated by gene expression, but by the metabolism of collagen XVIII.
Resumo:
Basic fibroblast growth factor (bFGF) regulates skin wound healing; however, the underlying mechanism remains to be defined. In the present study, we determined the effects of bFGF on the regulation of cell growth as well as collagen and fibronectin expression in fibroblasts from normal human skin and from hypertrophic scars. We then explored the involvement of mitochondria in mediating bFGF-inducedeffects on the fibroblasts. We isolated and cultivated normal and hypertrophic scar fibroblasts from tissue biopsies of patients who underwent plastic surgery for repairing hypertrophic scars. The fibroblasts were then treated with different concentrations of bFGF (ranging from 0.1 to 1000 ng/mL). The growth of hypertrophic scar fibroblasts became slower with selective inhibition of type I collagen production after exposure to bFGF. However, type III collagen expression was affected in both normal and hypertrophic scar fibroblasts. Moreover, fibronectin expression in the normal fibroblasts was up-regulated after bFGF treatment. bFGF (1000 ng/mL) also induced mitochondrial depolarization in hypertrophic scar fibroblasts (P < 0.01). The cellular ATP level decreased in hypertrophic scar fibroblasts (P < 0.05), while it increased in the normal fibroblasts following treatment with bFGF (P < 0.01). These data suggest that bFGF has differential effects and mechanisms on fibroblasts of the normal skin and hypertrophic scars, indicating that bFGF may play a role in the early phase of skin wound healing and post-burn scar formation.
Resumo:
We investigated the reactivity and expression of basal lamina collagen by Schwann cells (SCs) cultivated on a supraorganized bovine-derived collagen substrate. SC cultures were obtained from sciatic nerves of neonatal Sprague-Dawley rats and seeded on 24-well culture plates containing collagen substrate. The homogeneity of the cultures was evaluated with an SC marker antibody (anti-S-100). After 1 week, the cultures were fixed and processed for immunocytochemistry by using antibodies against type IV collagen, S-100 and p75NTR (pan neurotrophin receptor) and for scanning electron microscopy (SEM). Positive labeling with antibodies to the cited molecules was observed, indicating that the collagen substrate stimulates SC alignment and adhesion (collagen IV labeling - organized collagen substrate: 706.33 ± 370.86, non-organized collagen substrate: 744.00 ± 262.09; S-100 labeling - organized collagen: 3809.00 ± 120.28, non-organized collagen: 3026.00 ± 144.63, P < 0.05) and reactivity (p75NTR labeling - organized collagen: 2156.33 ± 561.78, non-organized collagen: 1424.00 ± 405.90, P < 0.05; means ± standard error of the mean in absorbance units). Cell alignment and adhesion to the substrate were confirmed by SEM analysis. The present results indicate that the collagen substrate with an aligned suprastructure, as seen by polarized light microscopy, provides an adequate scaffold for SCs, which in turn may increase the efficiency of the nerve regenerative process after in vivo repair.
Resumo:
Support structures for dermal regeneration are composed of biodegradable and bioresorbable polymers, animal skin or tendons, or are bacteria products. The use of such materials is controversial due to their low efficiency. An important area within tissue engineering is the application of multipotent mesenchymal stromal cells (MSCs) to reparative surgery. The combined use of biodegradable membranes with stem cell therapy may lead to promising results for patients undergoing unsuccessful conventional treatments. Thus, the aim of this study was to test the efficacy of using membranes composed of anionic collagen with or without the addition of hyaluronic acid (HA) as a substrate for adhesion and in vitro differentiation of bone marrow-derived canine MSCs. The benefit of basic fibroblast growth factor (bFGF) on the differentiation of cells in culture was also tested. MSCs were collected from dog bone marrow, isolated and grown on collagen scaffolds with or without HA. Cell viability, proliferation rate, and cellular toxicity were analyzed after 7 days. The cultured cells showed uniform growth and morphological characteristics of undifferentiated MSCs, which demonstrated that MSCs successfully adapted to the culture conditions established by collagen scaffolds with or without HA. This demonstrates that such scaffolds are promising for applications to tissue regeneration. bFGF significantly increased the proliferative rate of MSCs by 63% when compared to groups without the addition of the growth factor. However, the addition of bFGF becomes limiting, since it has an inhibitory effect at high concentrations in culture medium.
Resumo:
To understand the pathophysiological mechanisms of pulmonary arterial smooth muscle cell (PASMC) proliferation and extracellular-matrix accumulation in the development of pulmonary hypertension and remodeling, this study determined the effects of different doses of adrenomedullin (ADM) and adrenotensin (ADT) on PASMC proliferation and collagen synthesis. The objective was to investigate whether extracellular signal-regulated kinase (ERK1/2) signaling was involved in ADM- and ADT-stimulated proliferation of PASMCs in 4-week-old male Wistar rats (body weight: 100-150 g, n=10). The proliferation of PASMCs was examined by 5-bromo-2-deoxyuridine incorporation. A cell growth curve was generated by the Cell Counting Kit-8 method. Expression of collagen I, collagen III, and phosphorylated ERK1/2 (p-ERK1/2) was evaluated by immunofluorescence. The effects of different concentrations of ADM and ADT on collagen I, collagen III, and p-ERK1/2 protein expression were determined by immunoblotting. We also investigated the effect of PD98059 inhibition on the expression of p-ERK1/2 protein by immunoblotting. ADM dose-dependently decreased cell proliferation, whereas ADT dose-dependently increased it; and ADM and ADT inhibited each other with respect to their effects on the proliferation of PASMCs. Consistent with these results, the expression of collagen I, collagen III, and p-ERK1/2 in rat PASMCs decreased after exposure to ADM but was upregulated after exposure to ADT. PD98059 significantly inhibited the downregulation by ADM and the upregulation by ADT of p-ERK1/2 expression. We conclude that ADM inhibited, and ADT stimulated, ERK1/2 signaling in rat PASMCs to regulate cell proliferation and collagen expression.
Resumo:
Limitations on tissue proliferation capacity determined by telomerase/apoptosis balance have been implicated in pathogenesis of idiopathic pulmonary fibrosis. In addition, collagen V shows promise as an inductor of apoptosis. We evaluated the quantitative relationship between the telomerase/apoptosis index, collagen V synthesis, and epithelial/fibroblast replication in mice exposed to butylated hydroxytoluene (BHT) at high oxygen concentration. Two groups of mice were analyzed: 20 mice received BHT, and 10 control mice received corn oil. Telomerase expression, apoptosis, collagen I, III, and V fibers, and hydroxyproline were evaluated by immunohistochemistry, in situ detection of apoptosis, electron microscopy, immunofluorescence, and histomorphometry. Electron microscopy confirmed the presence of increased alveolar epithelial cells type 1 (AEC1) in apoptosis. Immunostaining showed increased nuclear expression of telomerase in AEC type 2 (AEC2) between normal and chronic scarring areas of usual interstitial pneumonia (UIP). Control lungs and normal areas from UIP lungs showed weak green birefringence of type I and III collagens in the alveolar wall and type V collagen in the basement membrane of alveolar capillaries. The increase in collagen V was greater than collagens I and III in scarring areas of UIP. A significant direct association was found between collagen V and AEC2 apoptosis. We concluded that telomerase, collagen V fiber density, and apoptosis evaluation in experimental UIP offers the potential to control reepithelization of alveolar septa and fibroblast proliferation. Strategies aimed at preventing high rates of collagen V synthesis, or local responses to high rates of cell apoptosis, may have a significant impact in pulmonary fibrosis.
Resumo:
Damage to cartilage causes a loss of type II collagen (Col-II) and glycosaminoglycans (GAG). To restore the original cartilage architecture, cell factors that stimulate Col-II and GAG production are needed. Insulin-like growth factor I (IGF-I) and transcription factor SOX9are essential for the synthesis of cartilage matrix, chondrocyte proliferation, and phenotype maintenance. We evaluated the combined effect of IGF-I and SOX9 transgene expression on Col-II and GAG production by cultured human articular chondrocytes. Transient transfection and cotransfection were performed using two mammalian expression plasmids (pCMV-SPORT6), one for each transgene. At day 9 post-transfection, the chondrocytes that were over-expressing IGF-I/SOX9 showed 2-fold increased mRNA expression of the Col-II gene, as well as a 57% increase in Col-II protein, whereas type I collagen expression (Col-I) was decreased by 59.3% compared with controls. The production of GAG by these cells increased significantly compared with the controls at day 9 (3.3- vs 1.8-times, an increase of almost 83%). Thus, IGF-I/SOX9 cotransfected chondrocytes may be useful for cell-based articular cartilage therapies.
Resumo:
AbstractHydrolysates from two different jumbo squid byproducts (fins and arms), produced by trypsin and protease type XIV were compared on the basis of their antioxidant (DPPH and ABTS radical scavenging assays), antimutagenic (Ames test) and antiproliferative (Transformation cell proliferation in M12.C3F6 murine cells) activities. Jumbo squid arms had higher content of collagen than fins, and their hydrolysates had the highest antioxidant activity. Also, jumbo squid arm-derived collagen hydrolyzed with protease XIV showed the highest antimutagenic activity. The four hydrolysates obtained showed low antiproliferative activity, however they are susceptible for further studies to be applied as food additives.