953 resultados para Cognitive Control
Resumo:
Sexual selection is responsible for the evolution of male ornaments and armaments, but its role in the evolution of cognition--the ability to process, retain and use information--is largely unexplored. Because successful courtship is likely to involve processing information in complex, competitive sexual environments, we hypothesized that sexual selection contributes to the evolution and maintenance of cognitive abilities in males. To test this, we removed mate choice and mate competition from experimental populations of Drosophila melanogaster by enforcing monogamy for over 100 generations. Males evolved under monogamy became less proficient than polygamous control males at relatively complex cognitive tasks. When faced with one receptive and several unreceptive females, polygamous males quickly focused on receptive females, whereas monogamous males continued to direct substantial courtship effort towards unreceptive females. As a result, monogamous males were less successful in this complex setting, despite being as quick to mate as their polygamous counterparts with only one receptive female. This diminished ability to use past information was not limited to the courtship context: monogamous males (but not females) also showed reduced aversive olfactory learning ability. Our results provide direct experimental evidence that the intensity of sexual selection is an important factor in the evolution of male cognitive ability.
Resumo:
Background: Atypical antipsychotics provide better control of the negative and affective symptoms of schizophrenia when compared with conventional neuroleptics; nevertheless, their heightened ability to improve cognitive dysfunction remains a matter of debate. This study aimed to examine the changes in cognition associated with long-term antipsychotic treatment and to evaluate the effect of the type of antipsychotic (conventional versus novel antipsychotic drugs) on cognitive performance over time. Methods: In this naturalistic study, we used a comprehensive neuropsychological battery of tests to assess a sample of schizophrenia patients taking either conventional (n = 13) or novel antipsychotics (n = 26) at baseline and at two years after. Results: Continuous antipsychotic treatment regardless of class was associated with improvement on verbal fluency, executive functions, and visual and verbal memory. Patients taking atypical antipsychotics did not show greater cognitive enhancement over two years than patients taking conventional antipsychotics. Conclusions Although long-term antipsychotic treatment slightly improved cognitive function, the switch from conventional to atypical antipsychotic treatment should not be based exclusively on the presence of these cognitive deficits.
Resumo:
INTRODUCTION: Inhibitory control refers to our ability to suppress ongoing motor, affective or cognitive processes and mostly depends on a fronto-basal brain network. Inhibitory control deficits participate in the emergence of several prominent psychiatric conditions, including attention deficit/hyperactivity disorder or addiction. The rehabilitation of these pathologies might therefore benefit from training-based behavioral interventions aiming at improving inhibitory control proficiency and normalizing the underlying neurophysiological mechanisms. The development of an efficient inhibitory control training regimen first requires determining the effects of practicing inhibition tasks. METHODS: We addressed this question by contrasting behavioral performance and electrical neuroimaging analyses of event-related potentials (ERPs) recorded from humans at the beginning versus the end of 1 h of practice on a stop-signal task (SST) involving the withholding of responses when a stop signal was presented during a speeded auditory discrimination task. RESULTS: Practicing a short SST improved behavioral performance. Electrophysiologically, ERPs differed topographically at 200 msec post-stimulus onset, indicative of the engagement of distinct brain network with learning. Source estimations localized this effect within the inferior frontal gyrus, the pre-supplementary motor area and the basal ganglia. CONCLUSION: Our collective results indicate that behavioral and brain responses during an inhibitory control task are subject to fast plastic changes and provide evidence that high-order fronto-basal executive networks can be modified by practicing a SST.
Resumo:
BACKGROUND: Overweight and obesity are common concerns in individuals with severe mental disorders. In particular, antipsychotic drugs (AP) frequently induce weight gain. This phenomenon lacks current management and no previous controlled studies seem to use cognitive therapy to modify eating and weight-related cognitions. Moreover, none of these studies considered binge eating or eating and weight-related cognitions as possible outcomes. AIM: The main aim of this study is to assess the effectivity of cognitive and behavioural treatment (CBT) on eating and weight-related cognitions, binge eating symptomatology and weight loss in patients who reported weight gain during AP treatment. METHOD: A randomized controlled study (12-week CBT vs. Brief Nutritional Education) was carried out on 61 patients treated with an antipsychotic drug who reported weight gain following treatment. Binge eating symptomatology, eating and weight-related cognitions, as well as weight and body mass index were assessed before treatment, at 12 weeks and at 24 weeks. RESULTS: The CBT group showed some improvement with respect to binge eating symptomatology and weight-related cognitions, whereas the control group did not. Weight loss occurred more progressively and was greater in the CBT group at 24 weeks. CONCLUSION: The proposed CBT treatment is particularly interesting for patients suffering from weight gain associated with antipsychotic treatment
Resumo:
Ullman (2004) suggested that Specific Language Impairment (SLI) results from a general procedural learning deficit. In order to test this hypothesis, we investigated children with SLI via procedural learning tasks exploring the verbal, motor, and cognitive domains. Results showed that compared with a Control Group, the children with SLI (a) were unable to learn a phonotactic learning task, (b) were able but less efficiently to learn a motor learning task and (c) succeeded in a cognitive learning task. Regarding the motor learning task (Serial Reaction Time Task), reaction times were longer and learning slower than in controls. The learning effect was not significant in children with an associated Developmental Coordination Disorder (DCD), and future studies should consider comorbid motor impairment in order to clarify whether impairments are related to the motor rather than the language disorder. Our results indicate that a phonotactic learning but not a cognitive procedural deficit underlies SLI, thus challenging Ullmans' general procedural deficit hypothesis, like a few other recent studies.
Resumo:
The Cognitive Reflection Test (CRT) is a test introduced by S. Frederick (2005) Cognitive reflection and decision making, J Econ Perspect 19(4): 25-42. The task is designed to measure the tendency to override an intuitive response that is incorrect and to engage in further reflection that leads to the correct response. The consistent sex differences in CRT performance may suggest a role for gonadal hormones, particularly testosterone. A now widely studied putative marker for fetal testosterone is the second-to-fourth digit ratio (2D:4D). This paper tests to what extent 2D:4D, as a proxy for prenatal exposure to testosterone, can predict CRT scores in a sample of 623 students. After controlling for sex, we observe that a lower 2D:4D (reflecting a higher exposure to testosterone) is significantly associated with a higher number of correct answers. The result holds for both hands? 2D:4Ds. In addition, the effect appears to be sharper for females than for males. We also control for patience and math proficiency, which are significantly related to performance in the CRT. But the effect of 2D:4D on performance in CRT is not reduced with these controls, implying that these variables are not mediating the relationship between digit ratio and CRT.
Resumo:
Una revisión sistemática de la organización compleja de los dominios cognitivos humanos y su heredabilidad. Antecedentes: se ha propuesto que la estructura de la cognición humana respondería a un sistema jerárquico, donde las secuencias propias a una acción se organizarían desde sub-unidades de análisis hasta funciones de nivel superior relativamente complejas. Esta estructura organizacional estaría reflejada en las representaciones neurales que subyacen al comportamiento humano, así como también en sus sustratos genéticos. El objetivo del presente estudio fue explorar la posible organización jerárquica de las influencias genéticas subyacentes a los dominios cognitivos humanos. Método: se revisaron treinta y cuatro estudios de la heredabilidad de la cognición en muestras de la población general, que incluyeron medidas de inteligencia, habilidades verbales y manipulativas, memoria, memoria de trabajo y velocidad de procesamiento. Resultados: diversos dominios cognitivos mostraron distintas proporciones de influencias genéticas, con las mayores estimaciones de heredabilidad halladas para las funciones cognitivas de nivel superior y las menores estimaciones para las funciones de orden medio o inferior. Conclusiones: tomando como referencia los conocimientos actuales acerca del neurodesarrollo humano, las contribuciones genéticas de las habilidades cognitivas parecen organizarse paralelamente al crecimiento ontogénico del cerebro. Se discuten estos resultados en relación a la interacción entre el control genético de las funciones cognitivas y sus influencias ambientales.
Resumo:
Spectrum is an essential resource for the provision of mobile services. In order to control and delimit its use, governmental agencies set up regulatory policies. Unfortunately, such policies have led to a deficiency of spectrum as only few frequency bands are left unlicensed, and these are used for the majority of new emerging wireless applications. One promising way to alleviate the spectrum shortage problem is adopting a spectrum sharing paradigm in which frequency bands are used opportunistically. Cognitive radio is the key technology to enable this shift of paradigm.Cognitive radio networks are self-organized systems in which devices cooperate to use those spectrum ranges that are not occupied by licensed users. They carry out spectrum sensing in order to detect vacant channels that can be used for communication. Even though spectrum sensing is an active area of research, an important issue remains unsolved: the secure authentication of sensing reports. Not providing security enables the input of false data in the system thus empowering false results. This paper presents a distributed protocol based on wireless physical layer security, symmetric cryptography and one-way functions that allows determining a final sensing decision from multiple sources in a quick and secure way, as well as it preserves users¿ privacy.
Resumo:
BACKGROUND: Very preterm (VP) infants are at greater risk for cognitive difficulties that may persist during school-age, adolescence and adulthood. Behavioral assessments report either effortful control (part of executive functions) or emotional reactivity/regulation impairments. AIMS: The aim of this study is to examine whether emotional recognition, reactivity, and regulation, as well as effortful control abilities are impaired in very preterm children at 42 months of age, compared with their full-term peers, and to what extent emotional and effortful control difficulties are linked. STUDY DESIGN: Children born very preterm (VP; < 29 weeks gestational age, n=41) and full-term (FT) aged-matched children (n=47) participated in a series of specific neuropsychological tests assessing their level of emotional understanding, reactivity and regulation, as well as their attentional and effortful control abilities. RESULTS: VP children exhibited higher scores of frustration and fear, and were less accurate in naming facial expressions of emotions than their aged-matched peers. However, VP children and FT children equally performed when asked to choose emotional facial expression in social context, and when we assessed their selective attention skills. VP performed significantly lower than full terms on two tasks of inhibition when correcting for verbal skills. Moreover, significant correlations between cognitive capacities (effortful control) and emotional abilities were evidenced. CONCLUSIONS: Compared to their FT peers, 42 month-olds who were born very preterm are at higher risk of exhibiting specific emotional and effortful control difficulties. The results suggest that these difficulties are linked. Ongoing behavioral and emotional impairments starting at an early age in preterms highlight the need for early interventions based on a better understanding of the relationship between emotional and cognitive difficulties.
Resumo:
After incidentally learning about a hidden regularity, participants can either continue to solve the task as instructed or, alternatively, apply a shortcut. Past research suggests that the amount of conflict implied by adopting a shortcut seems to bias the decision for vs. against continuing instruction-coherent task processing. We explored whether this decision might transfer from one incidental learning task to the next. Theories that conceptualize strategy change in incidental learning as a learning-plus-decision phenomenon suggest that high demands to adhere to instruction-coherent task processing in Task 1 will impede shortcut usage in Task 2, whereas low control demands will foster it. We sequentially applied two established incidental learning tasks differing in stimuli, responses and hidden regularity (the alphabet verification task followed by the serial reaction task, SRT). While some participants experienced a complete redundancy in the task material of the alphabet verification task (low demands to adhere to instructions), for others the redundancy was only partial. Thus, shortcut application would have led to errors (high demands to follow instructions). The low control demand condition showed the strongest usage of the fixed and repeating sequence of responses in the SRT. The transfer results are in line with the learning-plus-decision view of strategy change in incidental learning, rather than with resource theories of self-control.
Resumo:
Ample evidence indicates that inhibitory control (IC), a key executive component referring to the ability to suppress cognitive or motor processes, relies on a right-lateralized fronto-basal brain network. However, whether and how IC can be improved with training and the underlying neuroplastic mechanisms remains largely unresolved. We used functional and structural magnetic resonance imaging to measure the effects of 2 weeks of training with a Go/NoGo task specifically designed to improve frontal top-down IC mechanisms. The training-induced behavioral improvements were accompanied by a decrease in neural activity to inhibition trials within the right pars opercularis and triangularis, and in the left pars orbitalis of the inferior frontal gyri. Analyses of changes in brain anatomy induced by the IC training revealed increases in grey matter volume in the right pars orbitalis and modulations of white matter microstructure in the right pars triangularis. The task-specificity of the effects of training was confirmed by an absence of change in neural activity to a control working memory task. Our combined anatomical and functional findings indicate that differential patterns of functional and structural plasticity between and within inferior frontal gyri enhanced the speed of top-down inhibition processes and in turn IC proficiency. The results suggest that training-based interventions might help overcoming the anatomic and functional deficits of inferior frontal gyri manifesting in inhibition-related clinical conditions. More generally, we demonstrate how multimodal neuroimaging investigations of training-induced neuroplasticity enable revealing novel anatomo-functional dissociations within frontal executive brain networks. Hum Brain Mapp 36:2527-2543, 2015. © 2015 Wiley Periodicals, Inc.
Resumo:
Background Dopamine is believed to be a key neurotransmitter in the development of attention-deficit/ hyperactivity disorder (ADHD). Several recent studies point to an association of the dopamine D4 receptor (DRD4) gene and this condition. More specifically, the 7 repeat variant of a variable number of tandem repeats (VNTR) polymorphism in exon III of this gene is suggested to bear a higher risk for ADHD. In the present study, we investigated the role of this polymorphism in the modulation of neurophysiological correlates of response inhibition (Go/Nogo task) in a healthy, high-functioning sample. Results Homozygous 7 repeat carriers showed a tendency for more accurate behavior in the Go/Nogo task compared to homozygous 4 repeat carriers. Moreover, 7 repeat carriers presented an increased nogo-related theta band response together with a reduced go-related beta decrease. Conclusions These data point to improved cognitive functions and prefrontal control in the 7 repeat carriers, probably due to the D4 receptor's modulatory role in prefrontal areas. The results are discussed with respect to previous behavioral data on this polymorphism and animal studies on the impact of the D4 receptor on cognitive functions.
Resumo:
OBJECTIVE: To assess whether exposure to high altitude induces cognitive dysfunction in young healthy European children and adolescents during acute, short-term exposure to an altitude of 3450 m and in an age-matched European population permanently living at this altitude. STUDY DESIGN: We tested executive function (inhibition, shifting, and working memory), memory (verbal, short-term visuospatial, and verbal episodic memory), and speed processing ability in: (1) 48 healthy nonacclimatized European children and adolescents, 24 hours after arrival at high altitude and 3 months after return to low altitude; (2) 21 matched European subjects permanently living at high altitude; and (3) a matched control group tested twice at low altitude. RESULTS: Short-term hypoxia significantly impaired all but 2 (visuospatial memory and processing speed) of the neuropsychological abilities that were tested. These impairments were even more severe in the children permanently living at high altitude. Three months after return to low altitude, the neuropsychological performances significantly improved and were comparable with those observed in the control group tested only at low altitude. CONCLUSIONS: Acute short-term exposure to an altitude at which major tourist destinations are located induces marked executive and memory deficits in healthy children. These deficits are equally marked or more severe in children permanently living at high altitude and are expected to impair their learning abilities.
Resumo:
BACKGROUND: Fatigue is likely to be an important limiting factor in adolescents with spastic cerebral palsy (CP). AIMS: To determine the effects of walking-induced fatigue on postural control adjustments in adolescents with unilateral CP and their typically developing (TD) peers. METHODS: Ten adolescents with CP (14.2±1.7yr) and 10 age-, weight- and height-matched TD adolescents (14.1±1.9yr) walked for 15min on a treadmill at their preferred walking speed. Before and after this task, voluntary strength capacity of knee extensors (MVC) and postural control were evaluated in 3 conditions: eyes open (EO), eyes closed (EC) and with dual cognitive task (EODT). RESULTS: After walking, MVC decreased significantly in CP (-11%, P<0.05) but not in TD. The CoP area was only significantly increased in CP (90%, 34% and 60% for EO, EC and EODT conditions, respectively). The CoP length was significantly increased in the EO condition in CP and TD (20% and 21%) and was significantly increased in the EODT condition by 18% in CP only. CONCLUSIONS: Unlike TD adolescents, treadmill walking for 15min at their preferred speed lead to significant knee extensor strength losses and impairments in postural control in adolescents with unilateral spastic CP.
Resumo:
This study is aimed to clarify the association between MDMA cumulative use and cognitive dysfunction, and the potential role of candidate genetic polymorphisms in explaining individual differences in the cognitive effects of MDMA. Gene polymorphisms related to reduced serotonin function, poor competency of executive control and memory consolidation systems, and high enzymatic activity linked to bioactivation of MDMA to neurotoxic metabolites may contribute to explain variations in the cognitive impact of MDMA across regular users of this drug. Sixty ecstasy polydrug users, 110 cannabis users and 93 non-drug users were assessed using cognitive measures of Verbal Memory (California Verbal Learning Test, CVLT), Visual Memory (Rey-Osterrieth Complex Figure Test, ROCFT), Semantic Fluency, and Perceptual Attention (Symbol Digit Modalities Test, SDMT). Participants were also genotyped for polymorphisms within the 5HTT, 5HTR2A, COMT, CYP2D6, BDNF, and GRIN2B genes using polymerase chain reaction and TaqMan polymerase assays. Lifetime cumulative MDMA use was significantly associated with poorer performance on visuospatial memory and perceptual attention. Heavy MDMA users (>100 tablets lifetime use) interacted with candidate gene polymorphisms in explaining individual differences in cognitive performance between MDMA users and controls. MDMA users carrying COMT val/val and SERT s/s had poorer performance than paired controls on visuospatial attention and memory, and MDMA users with CYP2D6 ultra-rapid metabolizers performed worse than controls on semantic fluency. Both MDMA lifetime use and gene-related individual differences influence cognitive dysfunction in ecstasy users.