362 resultados para Coercivity


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Paleomagnetic analysis of sediment samples from Ocean Drilling Program (ODP) Leg 133, Site 820, 10 km from the outer edge of the Great Barrier Reef, is undertaken to investigate the mineral magnetic response to environmental (sea level) changes. Viscous remanent magnetization (VRM) of both multidomain and near-superparamagnetic origin is prevalent and largely obscures the primary remanence, except in isolated high-magnetization zones. The Brunhes/Matuyama boundary cannot be identified, but is expected to be below 120 mbsf. The only evidence that exists for a geomagnetic excursion occurs at about 33 mbsf (-135 k.y.). Only one-half the cores were oriented, and many suffered from internal rotation about the core axis, caused by coring and/or slicing. The decay of magnetic remanence below the surface layer (0-2 mbsf) is attributed to sulfate reduction processes. The magnetic susceptibility (K) record is central for describing and understanding the magnetic properties of the sediments, and their relationship to glacio-eustatic fluctuations in sea level. Three prominent magnetic susceptibility peaks, at about 7, 32, and 64 mbsf, are superimposed on a background of smaller susceptibility oscillations. Fluctuations in susceptibility and remanence in the ôbackgroundö zone are controlled predominantly by variations in the concentration, rather than the composition of ferrimagnetics, with carbonate dilution playing an important role (type-A properties). The sharp susceptibility maxima occur at the start of the marine transgressions following low stands in sea level (high d18O, glacial maxima), and are characterized by a stable single-domain remanence, with a significant contribution from ultra-fine, superparamagnetic grains (type-C properties). During the later marine transgression, the susceptibility gradually returns to low values and the remanence is carried by stable single-domain magnetite (type-B properties). The A, B, and C types of sediment have distinctive ARM/K ratios. Throughout most of the sequence a strong inverse correlation exists between magnetic susceptibility and both CaCO3 and d18O variations. However, in the sharp susceptibility peaks (early transgression), more complex phase relationships are apparent among these parameters. In particular, the K-d18O correlation switches to positive, then reverts to negative during the course of the late transgression, indicating that two distinct mechanisms are responsible for the K-d18O correlation. Lower in the sequence, where sea-level-controlled cycles of upward-coarsening sediments, we find that the initial, mud phase of each cycle has been enriched in high-coercivity magnetic material, which is indicative of more oxic conditions. The main magnetic characteristics of the sediments are thought to reflect sea-level-controlled variations in the sediment source regions and related run-off conditions. Some preliminary evidence is seen that biogenic magnetite may play a significant role in the magnetization of these sediments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hole 823A covers the upper 120 m (Subunits IA and IB) of Site 823 at the bottom of the Queensland Trough. This hole contains an abundance of gravity-flow deposits, but is thought to have a monotonic age sequence. Above 32 mbsf, a strong, stable (normal) magnetic remanence having a relatively small viscous remanent magnetization (VRM) is seen. Below 32 mbsf, the sediments are subject to widespread VRM, which appears to obliterate the primary magnetization and precludes identification of the Brunhes/Matuyama boundary. Progressive alternating field (AF) demagnetization is limited to low fields (typically <400 Oe) by the weak magnetization in these sediments. As a consequence, the possibility of a high-coercivity component of primary magnetization cannot be ruled out. Lowrie-Fuller tests indicate that this VRM overprinting does not have a multidomain origin. An approximately linear relationship exists between median destructive field (MDF) and the logarithm of the natural remanent magnetization (NRM). Carbonate dilution does not appear to be a dominant factor in controlling variations in concentration-dependent magnetic parameters, such as magnetic susceptibility. The sedimentological distinction between Subunits IA and IB does not show up in the magnetic record. However, a sharp change in magnetic properties does occur at 32 mbsf, with low background magnetizations below this level and high background magnetizations above it. The boundary coincides with a change from thick (>10 cm thick) to thin (<10 cm thick) turbidite deposition, and is also near the boundary separating the sulfate-reduction zone in the upper part of the sequence from the sulfate-free zone beneath. The abrupt nature of the magnetic boundary is evidence that nannofossil subzone CN14b is not condensed, but is missing in a hiatus at 32 mbsf. Nine peaks have been identified in the susceptibility (K) record that are superimposed on ôbackgroundö signals. ARM/K ratios are uniformly low for the background sediments below 32 mbsf, intermediate for strong susceptibility peaks, and high for background sediments above 32 mbsf and weak susceptibility peaks. Comparisons with results from Site 820 suggest that (1) the background sediments above 32 mbsf and the weak susceptibility peaks carry a stable single-domain magnetization, and (2) the high susceptibility peaks are caused by the addition of a superparamagnetic contribution. Expectations are that the distinctive features of the Hole 823A magnetic record are linked to major environmental changes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Geomagnetic excursions are recognized as intrinsic features of the Earth's magnetic field. High-resolution records of field behaviour, captured in marine sedimentary cores, present an opportunity to determine the temporal and geometric character of the field during geomagnetic excursions and provide constraints on the mechanisms producing field variability. We present here the highest resolution record yet published of the Blake geomagnetic excursion (~125 ka) measured in three cores from Ocean Drilling Program (ODP) Site 1062 on the Blake-Bahama Outer Ridge. The Blake excursion has a controversial structure and timing but these cores have a sufficiently high sedimentation rate (~10cm/ka) to allow detailed reconstruction of the field behaviour at this site during the excursion. Palaeomagnetic measurements of the cores reveal rapid transitions (<500 yr) between the contemporary stable normal polarity and a completely reversed state of long duration which spans a stratigraphic interval of 0.7 m. We determine the duration of the reversed state during the Blake excursion using oxygen isotope stratigraphy, combined with 230Th excess measurements to assess variations in the sedimentation rates through the sections of interest. This provides an age and duration for the Blake excursion with greater accuracy and with constrained uncertainty. We date the directional excursion as falling between 129 and 122 ka with a duration for the deviation of 6.5±1.3 kyr. The long duration of this interval and the fully reversed field suggest the existence of a pseudo-stable, reversed dipole field component during the excursion and challenge the idea that excursions are always of short duration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnetic fabrics of serpentinized peridotites are related to anisomorphic magnetite formed during serpentinization. In the less serpentinized facies they are, however, mainly mimetic of the high temperature deformation prior to serpentinization. In more serpentinized peridotites, the magnetic fabrics, related to magnetite veins which are more developed in this case, are superimposed on mimetic fabrics. Remanent properties, hysteresis loop parameters, and Curie temperatures were measured. Natural remanent magnetizations (NRM) have crystallization remanent magnetic (CRM) origin. Measured magnetic parameters suggest that pseudo-single domain (PSD) grains of magnetite are present in samples with low degree of serpentinization. The samples with high degree of serpentinization contain mainly multi-domain (MD) magnetite grains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have studied the magnetic properties of 22 samples from DSDP Leg 83 to determine the origin of remanence and its relationship to such problems as the tectonic and chemical evolution of the section, the depth of the magnetized layer, and the applicability of magnetic properties of ophiolites to the marine crust. The magnitude of natural remanence has fairly typical values in the uppermost part of the section, falls two to three orders of magnitude in the transition zone, and returns to values slightly less than the upper part in the dike complex. This behavior reflects, for the most part, variations in the amount of magnetic minerals present. Directional behavior is highly variable throughout the section and often shows complexity even on the level of a single sample. Curie temperature measurements and preliminary opaque petrography indicate that the remanence is chemical in origin and probably involves a resetting of the original thermal remanent magnetization (TRM) direction. Selective destructive demagnetization of four breccia samples shows that the remanence of the clasts was acquired prior to consolidation and did not change significantly thereafter. There are also indications that some of the remanence may be carried by secondary magnetic phases. A comparison of these samples with comparable ophiolite rocks is equivocal, with similarities in remanence characteristics but differences in magnetic mineralogy. As for magnetic anomalies, the transition zone is too weakly magnetized to contribute significantly. The available data on the dike complex are inconclusive and their contribution is still open to debate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The voluminous volcanic eruptions in the Nauru Basin, Western Pacific, have long been regarded as important research targets for tectonic history of the Pacific Plate and for the widespread Cretaceous volcanic activity in the Western Pacific. The Nauru Basin volcanic rocks were recovered at Site 462 by Deep Sea Drilling Project (DSDP) Legs 61 and 89, where more than 600 m of lavas and sills were drilled, thereby making it the deepest penetration into crust of Cretaceous age in the Pacific Ocean. For paleomagnetism, this section represents a unique possibility for averaging out secular variation to obtain a reliable paleolatitude estimate. However, previous paleomagnetic studies have only been subjected to alternating field (AF) demagnetization on several core samples, thus, unable to provide comprehensive understanding on the paleolatitude of the basin. The work reported here aims to determine the Cretaceous paleomagnetic paleolatitude for the Pacific Plate and define the magnetostratigraphy for the basaltic sections drilled in the Nauru Basin. A total of 391 basaltic rock samples were carefully re-sampled from DSDP Sites 462 and 462A. Stepwise thermal and AF demagnetizations have isolated characteristic components in the majority of the samples. The most important findings from this study include: (1) Two normal and one reversed polarity intervals are identified in Site 462, and six normal and six reversed polarity intervals are found in Site 462A, although possible erroneous markings of the opposite azimuth for some reversed polarity cores during the DSDP coring cannot be completely ruled out. (2) Based on previous radiometric ages, the magnetostratigraphic correlations with the Geomagnetic Polarity Time Scale (GPTS) indicate that the lower-basaltic flow unit in Site 462A began to erupt at least before 130 Ma. No correlation is available for the upper-sill unit. (3) Paleosecular variation for the lower-flow unit has been sufficiently averaged out; whereas bias may exist for that of the upper-sill unit; (4) The calculated mean inclination of ~50° for the lower-flow unit yields a paleolatitude of 30.8°S for the Nauru Basin at the time of emplacement. This value is well to the north of suggested location in plate reconstruction models, suggesting that there has been a significant amount of apparent polar wander of the Nauru Basin and Pacific plate since 130 Ma. In addition, the paleolatitude for the Nauru Basin is ~7° further south and the basin's age is more than 10 my older than those of the Ontong Java Plateau (OJP), which suggest that the volcanic eruptions of the lower flows in the Nauru Basin are unlikely related to the emplacement of the Ontong Java Plateau.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this manuscript, we present rock magnetic results of samples recovered during Leg 183. The Leg 183 cores were recovered from six drill sites and display variable rock magnetic properties. The differences in the rock magnetic properties are a function of mineralogy and alteration. Cretaceous subaerial basalt samples with titanomagnetite exhibit a strong Verwey transition in the vicinity of 110 K and have frequency-dependent susceptibility curves that resemble those of synthetic (titano) magnetites. These results are in good agreement with the thermomagnetic characteristics where titanomagnetites with Curie temperatures of ~580°C were identified. The hysteresis ratios suggest that the bulk magnetic grain size is in the psuedo-single-domain boundary. These subaerial basalts experienced high-temperature oxidation and maintained reliable paleomagnetic records. In contrast, the 34-Ma submarine pillow basalts do not show the Verwey transition during the low-temperature experiments. Thermomagnetic analysis shows that the remanent magnetization in this group is mainly carried by a thermally unstable mineral titanomaghemite. The frequency-dependent relationships are opposite of those from the first group and show little sign of titanomagnetite characteristics. Rocks from the third group are oxidized titanomagnetites and have multiple magnetic phases. They have irreversible thermaomagnetic curves and hysteresis ratios clustering toward the multidomain region (with higher Hcr/Hc ratios). The combined investigation suggests that variations in magnetic properties correlate with changes in lithology, which results in differences in the abundance and size of magnetic minerals. The rock magnetic data on Leg 183 samples clearly indicate that titanomagnetite is the dominant mineral and the primary remanence carrier in subaerial basalt. The generally good magnetic stability and other properties exhibited by titanomagnetite-bearing rocks support the inference that the ChRM isolated from the Cretaceous sites were acquired during the Cretaceous Normal Superchron. The stable inclinations identified from these samples are therefore useful for future tectonic studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The AND-1B drill core recovered a 13.57 million year Miocene through Pleistocene record from beneath the McMurdo Ice Shelf in Antarctica (77.9°S, 167.1°E). Varying sedimentary facies in the 1285 m core indicate glacial-interglacial cyclicity with the proximity of ice at the site ranging from grounding of ice in 917 m of water to ice free marine conditions. Broader interpretation of climatic conditions of the wider Ross Sea Embayment is deduced from provenance studies. Here we present an analysis of the iron oxide assemblages in the AND-1B core and interpret their variability with respect to wider paleoclimatic conditions. The core is naturally divided into an upper and lower succession by an expanded 170 m thick volcanic interval between 590 and 760 m. Above 590 m the Plio-Pleistocene glacial cycles are diatom rich and below 760 m late Miocene glacial cycles are terrigenous. Electron microscopy and rock magnetic parameters confirm the subdivision with biogenic silica diluting the terrigenous input (fine pseudo-single domain and stable single domain titanomagnetite from the McMurdo Volcanic Group with a variety of textures and compositions) above 590 m. Below 760 m, the Miocene section consists of coarse-grained ilmenite and multidomain magnetite derived from Transantarctic Mountain lithologies. This may reflect ice flow patterns and the absence of McMurdo Volcanic Group volcanic centers or indicate that volcanic centers had not yet grown to a significant size. The combined rock magnetic and electron microscopy signatures of magnetic minerals serve as provenance tracers in both ice proximal and distal sedimentary units, aiding in the study of ice sheet extent and dynamics, and the identification of ice rafted debris sources and dispersal patterns in the Ross Sea sector of Antarctica.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During Ocean Drilling Program (ODP) Leg 178, we drilled three sites on sediment drifts deposited on the continental rise on the western margin of the Antarctic Peninsula. These hemipelagic drifts were targeted for their potential to preserve a continuous record of the behavior of the West Antarctic Ice Sheet over the last 10 m.y. It has been proposed that drift development is linked to advances and retreats of the Antarctic continental ice sheet (Pudsey and Camerlenghi, 1998, doi:10.1017/S0954102098000376, and references therein; Barker, Camerlenghi, Acton, et al., 1999, doi:10.2973/odp.proc.ir.178.1999). However, the sediment is characterized by a very low carbonate content, with foraminifers restricted to very narrow intervals. This lack of carbonate precludes the construction of a delta18O or CaCO3 stratigraphy, depriving these sites of an important chronologic tool and global ice volume proxy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnetic polarity stratigraphies from ODP Leg 177 'high resolution' sites indicate Brunhes sedimentation rates in the 12-25 cm/kyr range, with a trend of decreasing sedimentation rates with increasing age. Magnetite is the principal remanence-carrying mineral. Downcore alteration of magnetite and authigenic growth of iron sulfides introduces a high coercivity diagenetic remanence carrier (pyrrhotite). The change in pore water sulfate with depth in the sediment tends to be in step with the decrease in magnetization intensity, indicating the link between sulfate reduction and magnetite dissolution. Shipboard pass-through magnetometer data are generally very noisy due to a combination of weak magnetization intensities, drilling-related core deformation, and the influence of authigenic iron sulfides. Post-cruise progressive demagnetization of discrete samples aids the magnetostratigraphic interpretation, as these measurements are less influenced by low magnetization intensities and drilling-related deformation. The magnetostratigraphic interpretations provide much-needed calibration for biostratigraphic events in the high latitude southern oceans. Apart from the ODP Hole 745B (Kerguelen Plateau), published Plio-Pleistocene magnetostratigraphies from ODP sites in the Southern Ocean are poorly constrained. For this reason, we compare interpolated ages of 11 radiolarian events and one diatom event that occur at Hole 745B and Leg 177 sites.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The major magnetic mineral in the turbidites and slumped sediments recovered at Leg 73 drill sites was near to magnetite in composition and in the form of small multidomain particles. There was no variation in magnetic mineralogy with the lithology. The variations in the intensities and directions of the natural remanent magnetization could be explained in terms of postdepositional grain rotations within the wet sediment. In the sands realignment was partial, whereas in some of the slumps the entire remanent magnetization was reset. Fine-particle magnetite was also the main magnetic constituent of the red clays. A significant proportion of a higher-coercivity mineral was also present. The magnetic characteristics of the red clays are explained as a combination of concentration and grain rotation effects. The implications to the assessment of the reliability of paleomagnetic data are discussed. Note: Conversion factors are as follows: 1 Am**2/kg = 1 emu/g, and 80 A/m about 1 Oe.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seventeen samples from pillow or massive "zero age" fresh basalts from ODP Legs 106 and 109 were studied in order to examine their magnetic properties and oxidation degree. Thermomagnetic analyses of studied samples show Curie temperatures from 127°C to 220°C with reversible heating and cooling curves. Hysteresis parameters indicate the contribution of large Pseudo-Single Domain (PSD) grain of titanomagnetites with saturation magnetization between 0.4 and 0.7 emu/g which is almost twice that those of other recent mid-oceanic dredged basalts (e.g., FAMOUS and CYAMEX-RISE). The large grain sizes and higher magnetic mineral concentration may suggest a slower cooling of these basalts compared to those previously studied. Electron microprobe analyses of titanomagnetite grains combined with Curie point determinations give z = 0.3 for the degree of low temperature oxidation, which is close to the other values reported for low temperature oxidation of mid-oceanic ridge basalts.