989 resultados para Coastal Processes
Resumo:
Rectangular dropshafts, commonly used in sewers and storm water systems, are characterised by significant flow aeration. New detailed air-water flow measurements were conducted in a near-full-scale dropshaft at large discharges. In the shaft pool and outflow channel, the results demonstrated the complexity of different competitive air entrainment mechanisms. Bubble size measurements showed a broad range of entrained bubble sizes. Analysis of streamwise distributions of bubbles suggested further some clustering process in the bubbly flow although, in the outflow channel, bubble chords were in average smaller than in the shaft pool. A robust hydrophone was tested to measure bubble acoustic spectra and to assess its field application potential. The acoustic results characterised accurately the order of magnitude of entrained bubble sizes, but the transformation from acoustic frequencies to bubble radii did not predict correctly the probability distribution functions of bubble sizes.
Resumo:
This paper presents a theoretical model of flow and chemical transport processes in subterranean estuaries (unconfined brackish groundwater aquifers at the ocean-land interface). The model shows that groundwater circulation and oscillating flow, caused by wave setup and tide, may constitute up to 96% of submarine groundwater discharge (SGWD) compared with 4% due to the net groundwater discharge. While these local flow processes do not change the total amount of land-derived chemical input to the ocean over a long period (e.g., yearly), they induce fluctuations of the chemical transfer rate as the aquifer undergoes saltwater intrusion. This may result in a substantial increase in chemical fluxes to the ocean over a short period (e.g., monthly and by a factor of 20 above the averaged level), imposing a possible threat to the marine environment. These results are essentially consistent with the experimental findings of Moore [1996] and have important implications for coastal resources management.
Resumo:
Most previous investigations on tide-induced watertable fluctuations in coastal aquifers have been based on one-dimensional models that describe the processes in the cross-shore direction alone, assuming negligible along-shore variability. A recent study proposed a two-dimensional approximation for tide-induced watertable fluctuations that took into account coastline variations. Here, we further develop this approximation in two ways, by extending the approximation to second order and by taking into account capillary effects. Our results demonstrate that both effects can markedly influence watertable fluctuations. In particular, with the first-order approximation, the local damping rate of the tidal signal could be subject to sizable errors.
Resumo:
The tidal influence on groundwater hydrodynamics, salt-water intrusion and submarine groundwater discharge from coastal/estuarine aquifers is poorly quantified for systems with a mildly sloping beach, in contrast to the case where a vertical beach face is assumed. We investigated the effect of beach slope for a coastal aquifer adjacent to a low-relief estuary, where industrial waste was emplaced over the aquifer. The waste was suspected to discharge leachate towards the estuary. Field observations at various locations showed that tidally induced groundwater head fluctuations were skewed temporally. Frequency analysis suggested that the fluctuation amplitudes decreased exponentially and the phase-tags increased Linearly for the primary tidal signals as they propagated inland. Salinisation zones were observed in the bottom part of the estuary and near the beach surface. Flow and transport processes in a cross-section perpendicular to the estuary were simulated using SEAWAT-2000, which is capable of depicting density-dependent flow and multi-species transport. The simulations showed that the modelled water table fluctuations were in good agreement with the monitored data. Further simulations were conducted to gain insight into the effects of beach slope. In particular the limiting case of a vertical beach face was considered. The simulations showed that density difference and tidal forcing drive a more complex hydrodynamic pattern for the mildly sloping beach than the vertical beach, as well as a profound asymmetry in tidally induced water table fluctuations and enhanced salt-water intrusion. The simulation results also indicated that contaminant transport from the aquifer to the estuary was affected by the tide, where for the mildly sloping beach, the tide tended to intensify the vertical mass exchange in the vicinity of the shorelines, (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Dissertação de Mestrado, Geologia do Ambiente e Sociedade, 15 de Fevereiro de 2016, Universidade dos Açores.
Resumo:
A detailed knowledge of the 3-D arrangement and lateral facies relationships of the stacking patterns in coastal deposits is essential to approach many geological problems such as precise tracing of sea level changes, particularly during small scale fluctuations. These are useful data regarding the geodynamic evolution of basin margins and yield profit in oil exploration. Sediment supply, wave-and tidal processes, coastal morphology, and accommodation space generated by eustasy and tectonics govern the highly variable architecture of sedimentary bodies deposited in coastal settings. But these parameters change with time, and erosional surfaces may play a prominent role in areas located towards land. Besides, lateral shift of erosional or even depositional loci very often results in destruction of large parts of the sediment record. Several case studies illustrate some commonly found arrangements of facies and their distinguishing features. The final aim is to get the best results from the sedimentological analysis of coastal units.
Resumo:
We present the study of the geochemical processes associated with the first successful remediation of a marine shore tailings deposit in a coastal desert environment (Bahia de Ite, in the Atacama Desert of Peru). The remediation approach implemented a wetland on top of the oxidized tailings. The site is characterized by a high hydrauliz gradient produced by agricultural irrigation on upstream gravel terraces that pushed river water (similar to 500 mg/L SO(4)) toward the sea and through the tailings deposit. The geochemical and isotopic (delta(2)H(water) and delta(18)O(water), delta(34)S(sulfate) , delta(18)O(sulfate)) approach applied here revealed that evaporite horizons (anhydrite and halite) in the gravel terraces are the source of increased concentrations of SO(4), Cl, and Na up to similar to 1500 mg/L in the springs at the base of the gravel terraces. Deeper groundwater interacting with underlying marine sequences increased the concentrations of SO(4), Cl, and Na up to 6000 mg/L and increased the alkalinity up to 923 mg/L CaCO(3) eq. in the coastal aquifer. These waters infiltrated into the tailings deposit at the shelf-tailings interface. Nonremediated tailings had a low-pH oxidation zone (pH 1-4) with significant accumulations of efflorescent salts (10-20 cm thick) at the surface because of upward capillary transport of metal cations in the arid climate. Remediated tailings were characterized by neutral pH and reducing conditions (pH similar to 7, Eh similar to 100 mV). As a result, most bivalent metals such as Cu, Zn, and Ni had very low concentrations (around 0.01 mg/L or below detection limit) because of reduction and sorption processes. In contrast, these reducing conditions increased the mobility of iron from two sources in this system: (1) The originally Fe(III)-rich oxidation zone, where Fe(II) was reduced during the remediation process and formed an Fe(II) plume, and (2) reductive dissolution of Fe(III) oxides present in the original shelf lithology formed an Fe-Mn plume at 10-m depth. These two Fe-rich plumes were pushed toward the shoreline where more oxidizing and higher pH conditions triggered the precipitation of Fe(HI)hydroxide coatings on silicates. These coatings acted as a filter for the arsenic, which naturally infiltrated with the river water (similar to 500 mu g/L As natural background) into the tailings deposit.
Resumo:
Many mineralizations, showings and geochemical anomalies have been found in the Hercynian of the Catalonian Coastal Ranges during the last ten years. Many of them are enclosed in the Paleozoic sediments and volcanics and display pre-metamorphic syngenetic characteristics. The lower carboniferous manganese and base meta1 deposits appear to be formed from hydrothermal fluids springing up in the sea floor through active fractures controlling the filling of the basins in a extensional geotectonic setting. Although less evidence and more controversy is available, similar ore forming processes could have taken place in older Paleozoic times. The deformation and metamorphism have not played an important remobilization role, and most epigenetic deposits of Hercynian age are related to the hydrothermal cells induced by the post-metamorphic granitic intrusives.
Resumo:
This work aims to characterise the current autotrophic compartment of the Albufera des Grau coastal lagoon (Menorca, Balearic Islands) and to assess the relationship between the submerged macrophytes and the limnological parameters of the lagoon. During the study period the submerged vegetation was dominated by the macrophyte Ruppia cirrhosa, which formed dense extensive meadows covering 79% of the surface. Another macrophyte species, Potamogeton pectinatus, was also observed but only forming small stands near the rushing streams. Macroalgae were only occasionally observed. Macrophyte biomass showed a clear seasonal trend, with maximum values in July. The biomass of R. cirrhosa achieved 1760 g DW m-2, the highest biomass ever reported for this species in the literature. The seasonal production-decomposition cycle of the macrophyte meadows appears to drive the nutrient dynamics and carbon fluxes in the lagoon. Despite the significant biomass accumulation and the absence of a washout of nutrients and organic matter to the sea, the lagoon did not experience a dystrophic collapse. These results indicate that internal metabolism is more important than exchange processes in the lagoon.
Resumo:
To understand dissolved organic carbon (DOC) seasonal dynamics in a coastal oligotrophic site in the north-western Mediterranean Sea, we monitored DOC concentrations monthly over 3 yr, together with the meteorological data and the food-web-related biological processes involved in DOC dynamics. Additional DOC samples were taken in several inshore−offshore transects along the Catalan coast. We found DOC concentrations of ~60 µmol C l−1 in winter, with increasing values through the summer and autumn and reaching 100 to 120 µmol C l−1 in November. There was high inter-annual variability in this summer DOC accumulation, with values of 36, 69 and 13 µmol C l−1 for 2006, 2007 and 2008, respectively. The analysis of the microbial food-web processes involved in the DOC balance did not reveal the causes of this accumulation, since the only occasion on which we observed net DOC production (0.3 ± 1 µmol C l−1 d−1 on average) was in 2007, and the negative DOC balance of 2006 and 2008 did not prevent DOC accumulating. The DOC accumulation episodes coincided with low rates of water renewal (average 0.037 ± 0.021 d−1 from May to October) compared with those of winter to early spring (average 0.11 ± 0.048 d−1 from November to April). Indeed, the amount of DOC accumulated each year was inversely correlated with the average summer rainfall. We hypothesize that decreased DOC turn-over due to photochemical or biological processes mostly active during the summer and low water renewal rate combine to determine seasonal DOC accumulation and influence its inter-annual variability.
Resumo:
Coastal birds are an integral part of coastal ecosystems, which nowadays are subject to severe environmental pressures. Effective measures for the management and conservation of seabirds and their habitats call for insight into their population processes and the factors affecting their distribution and abundance. Central to national and international management and conservation measures is the availability of accurate data and information on bird populations, as well as on environmental trends and on measures taken to solve environmental problems. In this thesis I address different aspects of the occurrence, abundance, population trends and breeding success of waterbirds breeding on the Finnish coast of the Baltic Sea, and discuss the implications of the results for seabird monitoring, management and conservation. In addition, I assess the position and prospects of coastal bird monitoring data, in the processing and dissemination of biodiversity data and information in accordance with the Convention on Biological Diversity (CBD) and other national and international commitments. I show that important factors for seabird habitat selection are island area and elevation, water depth, shore openness, and the composition of island cover habitats. Habitat preferences are species-specific, with certain similarities within species groups. The occurrence of the colonial Arctic Tern (Sterna paradisaea) is partly affected by different habitat characteristics than its abundance. Using long-term bird monitoring data, I show that eutrophication and winter severity have reduced the populations of several Finnish seabird species. A major demographic factor through which environmental changes influence bird populations is breeding success. Breeding success can function as a more rapid indicator of sublethal environmental impacts than population trends, particularly for long-lived and slowbreeding species, and should therefore be included in coastal bird monitoring schemes. Among my target species, local breeding success can be shown to affect the populations of the Mallard (Anas platyrhynchos), the Eider (Somateria mollissima) and the Goosander (Mergus merganser) after a time lag corresponding to their species-specific recruitment age. For some of the target species, the number of individuals in late summer can be used as an easier and more cost-effective indicator of breeding success than brood counts. My results highlight that the interpretation and application of habitat and population studies require solid background knowledge of the ecology of the target species. In addition, the special characteristics of coastal birds, their habitats, and coastal bird monitoring data have to be considered in the assessment of their distribution and population trends. According to the results, the relationships between the occurrence, abundance and population trends of coastal birds and environmental factors can be quantitatively assessed using multivariate modelling and model selection. Spatial data sets widely available in Finland can be utilised in the calculation of several variables that are relevant to the habitat selection of Finnish coastal species. Concerning some habitat characteristics field work is still required, due to a lack of remotely sensed data or the low resolution of readily available data in relation to the fine scale of the habitat patches in the archipelago. While long-term data sets exist for water quality and weather, the lack of data concerning for instance the food resources of birds hampers more detailed studies of environmental effects on bird populations. Intensive studies of coastal bird species in different archipelago areas should be encouraged. The provision and free delivery of high-quality coastal data concerning bird populations and their habitats would greatly increase the capability of ecological modelling, as well as the management and conservation of coastal environments and communities. International initiatives that promote open spatial data infrastructures and sharing are therefore highly regarded. To function effectively, international information networks, such as the biodiversity Clearing House Mechanism (CHM) under the CBD, need to be rooted at regional and local levels. Attention should also be paid to the processing of data for higher levels of the information hierarchy, so that data are synthesized and developed into high-quality knowledge applicable to management and conservation.
Resumo:
Coastal areas harbour high biodiversity, but are simultaneously affected by rapid degradations of species and habitats due to human interactions. Such alterations also affect the functioning of the ecosystem, which is primarily governed by the characteristics or traits expressed by the organisms present. Marine benthic fauna is nvolved in numerous functions such as organic matter transformation and transport, secondary production, oxygen transport as well as nutrient cycling. Approaches utilising the variety of faunal traits to assess benthic community functioning have rapidly increased and shown the need for further development of the concept. In this thesis, I applied biological trait analysis that allows for assessments of a multitude of categorical traits and thus evaluation of multiple functional aspects simultaneously. I determined the functional trait structure, diversity and variability of coastal zoobenthic communities in the Baltic Sea. The measures were related to recruitment processes, habitat heterogeneity, large-scale environmental and taxonomic gradients as well as anthropogenic impacts. The studies comprised spatial scales from metres to thousands of kilometres, and temporal scales spanning one season as well as a decade. The benthic functional structure was found to vary within and between seagrass landscape microhabitats and four different habitats within a coastal bay, in papers I and II respectively. Expressions of trait categories varied within habitats, while the density of individuals was found to drive the functional differences between habitats. The findings in paper III unveiled high trait richness of Finnish coastal benthos (25 traits and 102 cateogries) although this differed between areas high and low in salinity and human pressure. In paper IV, the natural reduction in taxonomic richness across the Baltic Sea led to an overall reduction in function. However, functional richness in terms of number of trait categories remained comparatively high at low taxon richness. Changes in number of taxa within trait categories were also subtle and some individual categories were maintained or even increased. The temporal analysis in papers I and III highlighted generalities in trait expressions and dominant trait categories in a seagrass landscape as well as a “type organism” for the northern Baltic Sea. Some initial findings were made in all four papers on the role of common and rare species and traits for benthic community functioning. The findings show that common and rare species may not always express the same trait categories in relation to each other. Rare species in general did not express unique functional properties. In order to advance the understanding of the approach, I also assessed some issues concerning the limitations of the concept. This was conducted by evaluating the link between trait category and taxonomic richness using especially univariate measures. My results also show the need to collaborate nationally and internationally on safeguarding the utility of taxonomic and trait data. The findings also highlight the importance of including functional trait information into current efforts in marine spatial planning and biomonitoring.
Resumo:
The underwater light field is an important environmental variable as it, among other things, enables aquatic primary production. Although the portion of solar radiation that is referred to as visible light penetrates water, it is restricted to a limited surface water layer because of efficient absorption and scattering processes. Based on the varying content of optical constituents in the water, the efficiency of light attenuation changes in many dimensions and over various spatial and temporal scales. This thesis discusses the underwater light dynamics of a transitional coastal archipelago in south-western Finland, in the Baltic Sea. While the area has long been known to have a highly variable underwater light field, quantified knowledge on the phenomenon has been scarce, patchy, or non-existent. This thesis focuses on the variability in the underwater light field through euphotic depths (1% irradiance remaining), which were derived from in situ measurements of vertical profiles of photosynthetically active radiation (PAR). Spot samples were conducted in the archipelago of south-western Finland, mainly during the ice-free growing seasons of 2010 and 2011. In addition to quantifying both the seasonal and geographical patterns of euphotic depth development, the need and usability of underwater light information are also discussed. Light availability was found to fluctuate in multiple dimensions and scales. The euphotic depth was shown to have combined spatio-temporal dynamics rather than separate changes in spatial and temporal dimensions. Such complexity in the underwater light field creates challenges in data collection, as well as in its utilisation. Although local information is needed, in highly variable conditions spot sampled information may only poorly represent its surroundings. Moreover, either temporally or spatially limited sampling may cause biases in understanding underwater light dynamics. Consequently, the application of light availability data, for example in ecological modelling, should be made with great caution.
Resumo:
The present study is an attempt to understand some of the chemical oceanographic processes of the coastal water and the backwaters of Cochin. The importance of this study lies in the fact that there has been an increasing concern on the environmental degradation of Cochin backwaters with respect to water and sediments due to various anthropogenic activities. The study comprises the results and discussion of the hydro chemical parameters of coastal waters of Cochin during different seasons with statistical analysis. The parameters dealt with are salinity, temperature, pH, dissolved oxygen, nitrite-N, nitrate-N, ammonia-N, Silicate-Si, phosphate-P, chlorophyll ‘a’ and suspended solids, dissolved trace metals and sediment characteristics including sediment metals
Resumo:
The coastal and nearshore areas have played vital role in the trade and economic development of coastal nations since ancient times. In recent years, the demands for utilization of these areas have increased for purposes of navigation, setting up of offshore structures for oil industry, exploitation of the available fishery and mineral resources, and to provide recreational facilities along the coast as a part of the coastal zone management. It is in this context the studies on nearshore processes receive greater priorities. Stability of beaches is controlled by the interaction of various physical parameters such as winds, waves, currents, tides and the nature and constituents of the beaches. The results of studies carried out by the author on the dynamical effects of these environmental parameters on the shoreline processes along the beaches around Cochin are presented in this thesis. The section of the coast investigated is about 57 km of shore from Azhikode to Anthakaranazhi situated on the central Kerala coast. Four regions namely Narakkal, Malipuram, Fort Cochin and Anthakaranazhi were chosen for detailed study