937 resultados para Classification time


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a technique for real-time crowd density estimation based on textures of crowd images. In this technique, the current image from a sequence of input images is classified into a crowd density class. Then, the classification is corrected by a low-pass filter based on the crowd density classification of the last n images of the input sequence. The technique obtained 73.89% of correct classification in a real-time application on a sequence of 9892 crowd images. Distributed processing was used in order to obtain real-time performance. © Springer-Verlag Berlin Heidelberg 2005.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most of the tasks in genome annotation can be at least partially automated. Since this annotation is time-consuming, facilitating some parts of the process - thus freeing the specialist to carry out more valuable tasks - has been the motivation of many tools and annotation environments. In particular, annotation of protein function can benefit from knowledge about enzymatic processes. The use of sequence homology alone is not a good approach to derive this knowledge when there are only a few homologues of the sequence to be annotated. The alternative is to use motifs. This paper uses a symbolic machine learning approach to derive rules for the classification of enzymes according to the Enzyme Commission (EC). Our results show that, for the top class, the average global classification error is 3.13%. Our technique also produces a set of rules relating structural to functional information, which is important to understand the protein tridimensional structure and determine its biological function. © 2009 Springer Berlin Heidelberg.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Computer-Aided Diagnosis-based schemes in mammography analysis each module is interconnected, which directly affects the system operation as a whole. The identification of mammograms with and without masses is highly needed to reduce the false positive rates regarding the automatic selection of regions of interest for further image segmentation. This study aims to evaluate the performance of three techniques in classifying regions of interest as containing masses or without masses (without clinical findings), as well as the main contribution of this work is to introduce the Optimum-Path Forest (OPF) classifier in this context, which has never been done so far. Thus, we have compared OPF against with two sorts of neural networks in a private dataset composed by 120 images: Radial Basis Function and Multilayer Perceptron (MLP). Texture features have been used for such purpose, and the experiments have demonstrated that MLP networks have been slightly better than OPF, but the former is much faster, which can be a suitable tool for real-time recognition systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

L. Antonangelo, F. S. Vargas, M. M. P. Acencio, A. P. Cora, L. R. Teixeira, E. H. Genofre and R. K. B. Sales Effect of temperature and storage time on cellular analysis of fresh pleural fluid samples Objective: Despite the methodological variability in preparation techniques for pleural fluid cytology, it is fundamental that the cells should be preserved, permitting adequate morphological classification. We evaluated numerical and morphological changes in pleural fluid specimens processed after storage at room temperature or under refrigeration. Methods: Aliquots of pleural fluid from 30 patients, collected in ethylenediaminetetraacetic acid-coated tubes and maintained at room temperature (21 degrees C) or refrigeration (4 degrees C) were evaluated after 2 and 6 hours and 1, 2, 3, 4, 7 and 14 days. Evaluation of cytomorphology and global and percentage counts of leucocytes, macrophages and mesothelial cells were included. Results: The samples had quantitative cellular variations from day 3 or 4 onwards, depending on the storage conditions. Morphological alterations occurred earlier in samples maintained at room temperature (day 2) than in those under refrigeration (day 4). Conclusions: This study confirms that storage time and temperature are potential pre-analytical causes of error in pleural fluid cytology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a detailed study of carbon-enhanced metal-poor (CEMP) stars, based on high-resolution spectroscopic observations of a sample of 18 stars. The stellar spectra for this sample were obtained at the 4.2 m William Herschel Telescope in 2001 and 2002, using the Utrecht Echelle Spectrograph, at a resolving power R similar to 52 000 and S/N similar to 40, covering the wavelength range lambda lambda 3700-5700 angstrom. The atmospheric parameters determined for this sample indicate temperatures ranging from 4750 K to 7100 K, log g from 1.5 to 4.3, and metallicities -3.0 <= [Fe/H]<=-1.7. Elemental abundances for C, Na, Mg, Sc, Ti, Cr, Cu, Zn, Sr, Y, Zr, Ba, La, Ce, Nd, Sm, Eu, Gd, Dy are determined. Abundances for an additional 109 stars were taken from the literature and combined with the data of our sample. The literature sample reveals a lack of reliable abundance estimates for species that might be associated with the r-process elements for about 67% of CEMP stars, preventing a complete understanding of this class of stars, since [Ba/Eu] ratios are used to classify them. Although eight stars in our observed sample are also found in the literature sample, Eu abundances or limits are determined for four of these stars for the first time. From the observed correlations between C, Ba, and Eu, we argue that the CEMP-r/s class has the same astronomical origin as CEMP-s stars, highlighting the need for a more complete understanding of Eu production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To evaluate the retinal nerve fiber layer measurements with time-domain (TD) and spectral-domain (SD) optical coherence tomography (OCT), and to test the diagnostic ability of both technologies in glaucomatous patients with asymmetric visual hemifield loss. Methods: 36 patients with primary open-angle glaucoma with visual field loss in one hemifield (affected) and absent loss in the other (non-affected), and 36 age-matched healthy controls had the study eye imaged with Stratus-OCT (Carl Zeiss Meditec Inc., Dublin, California, USA) and 3 D OCT-1000 (Topcon, Tokyo, Japan). Peripapillary retinal nerve fiber layer measurements and normative classification were recorded. Total deviation values were averaged in each hemifield (hemifield mean deviation) for each subject. Visual field and retinal nerve fiber layer "asymmetry indexes" were calculated as the ratio between affected versus non-affected hemifields and corresponding hemiretinas. Results: Retinal nerve fiber layer measurements in non-affected hemifields (mean [SD] 87.0 [17.1] mu m and 84.3 [20.2] mu m, for TD and SD-OCT, respectively) were thinner than in controls (119.0 [12.2] mu m and 117.0 [17.7] mu m, P<0.001). The optical coherence tomography normative database classified 42% and 67% of hemiretinas corresponding to non-affected hemifields as abnormal in TD and SD-OCT, respectively (P=0.01). Retinal nerve fiber layer measurements were consistently thicker with TD compared to SD-OCT. Retinal nerve fiber layer thickness asymmetry index was similar in TD (0.76 [0.17]) and SD-OCT (0.79 [0.12]) and significantly greater than the visual field asymmetry index (0.36 [0.20], P<0.001). Conclusions: Normal hemifields of glaucoma patients had thinner retinal nerve fiber layer than healthy eyes, as measured by TD and SD-OCT. Retinal nerve fiber layer measurements were thicker with TD than SD-OCT. SD-OCT detected abnormal retinal nerve fiber layer thickness more often than TD-OCT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gravity Recovery and Climate Experiment (GRACE) mission is dedicated to measuring temporal variations of the Earth's gravity field. In this study, the Stokes coefficients made available by Groupe de Recherche en Géodésie Spatiale (GRGS) at a 10-day interval were converted into equivalent water height (EWH) for a ~4-year period in the Amazon basin (from July-2002 to May-2006). The seasonal amplitudes of EWH signal are the largest on the surface of Earth and reach ~ 1250mm at that basin's center. Error budget represents ~130 mm of EWH, including formal errors on Stokes coefficient, leakage errors (12 ~ 21 mm) and spectrum truncation (10 ~ 15 mm). Comparison between in situ river level time series measured at 233 ground-based hydrometric stations (HS) in the Amazon basin and vertically-integrated EWH derived from GRACE is carried out in this paper. Although EWH and HS measure different water bodies, in most of the cases a high correlation (up to ~80%) is detected between the HS series and EWH series at the same site. This correlation allows adjusting linear relationships between in situ and GRACE-based series for the major tributaries of the Amazon river. The regression coefficients decrease from up to down stream along the rivers reaching the theoretical value 1 at the Amazon's mouth in the Atlantic Ocean. The variation of the regression coefficients versus the distance from estuary is analysed for the largest rivers in the basin. In a second step, a classification of the proportionality between in situ and GRACE time-series is proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ubiquity of time series data across almost all human endeavors has produced a great interest in time series data mining in the last decade. While dozens of classification algorithms have been applied to time series, recent empirical evidence strongly suggests that simple nearest neighbor classification is exceptionally difficult to beat. The choice of distance measure used by the nearest neighbor algorithm is important, and depends on the invariances required by the domain. For example, motion capture data typically requires invariance to warping, and cardiology data requires invariance to the baseline (the mean value). Similarly, recent work suggests that for time series clustering, the choice of clustering algorithm is much less important than the choice of distance measure used.In this work we make a somewhat surprising claim. There is an invariance that the community seems to have missed, complexity invariance. Intuitively, the problem is that in many domains the different classes may have different complexities, and pairs of complex objects, even those which subjectively may seem very similar to the human eye, tend to be further apart under current distance measures than pairs of simple objects. This fact introduces errors in nearest neighbor classification, where some complex objects may be incorrectly assigned to a simpler class. Similarly, for clustering this effect can introduce errors by “suggesting” to the clustering algorithm that subjectively similar, but complex objects belong in a sparser and larger diameter cluster than is truly warranted.We introduce the first complexity-invariant distance measure for time series, and show that it generally produces significant improvements in classification and clustering accuracy. We further show that this improvement does not compromise efficiency, since we can lower bound the measure and use a modification of triangular inequality, thus making use of most existing indexing and data mining algorithms. We evaluate our ideas with the largest and most comprehensive set of time series mining experiments ever attempted in a single work, and show that complexity-invariant distance measures can produce improvements in classification and clustering in the vast majority of cases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The diagnosis, grading and classification of tumours has benefited considerably from the development of DCE-MRI which is now essential to the adequate clinical management of many tumour types due to its capability in detecting active angiogenesis. Several strategies have been proposed for DCE-MRI evaluation. Visual inspection of contrast agent concentration curves vs time is a very simple yet operator dependent procedure, therefore more objective approaches have been developed in order to facilitate comparison between studies. In so called model free approaches, descriptive or heuristic information extracted from time series raw data have been used for tissue classification. The main issue concerning these schemes is that they have not a direct interpretation in terms of physiological properties of the tissues. On the other hand, model based investigations typically involve compartmental tracer kinetic modelling and pixel-by-pixel estimation of kinetic parameters via non-linear regression applied on region of interests opportunely selected by the physician. This approach has the advantage to provide parameters directly related to the pathophysiological properties of the tissue such as vessel permeability, local regional blood flow, extraction fraction, concentration gradient between plasma and extravascular-extracellular space. Anyway, nonlinear modelling is computational demanding and the accuracy of the estimates can be affected by the signal-to-noise ratio and by the initial solutions. The principal aim of this thesis is investigate the use of semi-quantitative and quantitative parameters for segmentation and classification of breast lesion. The objectives can be subdivided as follow: describe the principal techniques to evaluate time intensity curve in DCE-MRI with focus on kinetic model proposed in literature; to evaluate the influence in parametrization choice for a classic bi-compartmental kinetic models; to evaluate the performance of a method for simultaneous tracer kinetic modelling and pixel classification; to evaluate performance of machine learning techniques training for segmentation and classification of breast lesion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intelligent Transport Systems (ITS) consists in the application of ICT to transport to offer new and improved services to the mobility of people and freights. While using ITS, travellers produce large quantities of data that can be collected and analysed to study their behaviour and to provide information to decision makers and planners. The thesis proposes innovative deployments of classification algorithms for Intelligent Transport System with the aim to support the decisions on traffic rerouting, bus transport demand and behaviour of two wheelers vehicles. The first part of this work provides an overview and a classification of a selection of clustering algorithms that can be implemented for the analysis of ITS data. The first contribution of this thesis is an innovative use of the agglomerative hierarchical clustering algorithm to classify similar travels in terms of their origin and destination, together with the proposal for a methodology to analyse drivers’ route choice behaviour using GPS coordinates and optimal alternatives. The clusters of repetitive travels made by a sample of drivers are then analysed to compare observed route choices to the modelled alternatives. The results of the analysis show that drivers select routes that are more reliable but that are more expensive in terms of travel time. Successively, different types of users of a service that provides information on the real time arrivals of bus at stop are classified using Support Vector Machines. The results shows that the results of the classification of different types of bus transport users can be used to update or complement the census on bus transport flows. Finally, the problem of the classification of accidents made by two wheelers vehicles is presented together with possible future application of clustering methodologies aimed at identifying and classifying the different types of accidents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays communication is switching from a centralized scenario, where communication media like newspapers, radio, TV programs produce information and people are just consumers, to a completely different decentralized scenario, where everyone is potentially an information producer through the use of social networks, blogs, forums that allow a real-time worldwide information exchange. These new instruments, as a result of their widespread diffusion, have started playing an important socio-economic role. They are the most used communication media and, as a consequence, they constitute the main source of information enterprises, political parties and other organizations can rely on. Analyzing data stored in servers all over the world is feasible by means of Text Mining techniques like Sentiment Analysis, which aims to extract opinions from huge amount of unstructured texts. This could lead to determine, for instance, the user satisfaction degree about products, services, politicians and so on. In this context, this dissertation presents new Document Sentiment Classification methods based on the mathematical theory of Markov Chains. All these approaches bank on a Markov Chain based model, which is language independent and whose killing features are simplicity and generality, which make it interesting with respect to previous sophisticated techniques. Every discussed technique has been tested in both Single-Domain and Cross-Domain Sentiment Classification areas, comparing performance with those of other two previous works. The performed analysis shows that some of the examined algorithms produce results comparable with the best methods in literature, with reference to both single-domain and cross-domain tasks, in $2$-classes (i.e. positive and negative) Document Sentiment Classification. However, there is still room for improvement, because this work also shows the way to walk in order to enhance performance, that is, a good novel feature selection process would be enough to outperform the state of the art. Furthermore, since some of the proposed approaches show promising results in $2$-classes Single-Domain Sentiment Classification, another future work will regard validating these results also in tasks with more than $2$ classes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We conducted an explorative, cross-sectional, multi-centre study in order to identify the most common problems of people with any kind of (primary) sleep disorder in a clinical setting using the International Classification of Functioning, Disability and Health (ICF) as a frame of reference. Data were collected from patients using a structured face-to-face interview of 45-60 min duration. A case record form for health professionals containing the extended ICF Checklist, sociodemographic variables and disease-specific variables was used. The study centres collected data of 99 individuals with sleep disorders. The identified categories include 48 (32%) for body functions, 13 (9%) body structures, 55 (37%) activities and participation and 32 (22%) for environmental factors. 'Sleep functions' (100%) and 'energy and drive functions', respectively, (85%) were the most severely impaired second-level categories of body functions followed by 'attention functions' (78%) and 'temperament and personality functions' (77%). With regard to the component activities and participation, patients felt most restricted in the categories of 'watching' (e.g. TV) (82%), 'recreation and leisure' (75%) and 'carrying out daily routine' (74%). Within the component environmental factors the categories 'support of immediate family', 'health services, systems and policies' and 'products or substances for personal consumption [medication]' were the most important facilitators; 'time-related changes', 'light' and 'climate' were the most important barriers. The study identified a large variety of functional problems reflecting the complexity of sleep disorders. The ICF has the potential to provide a comprehensive framework for the description of functional health in individuals with sleep disorders in a clinical setting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Membrane interactions of porphyrinic photosensitizers (PSs) are known to play a crucial role for PS efficiency in photodynamic therapy (PDT). In the current paper, the interactions between 15 different porphyrinic PSs with various hydrophilic/lipophilic properties and phospholipid bilayers were probed by NMR spectroscopy. Unilamellar vesicles consisting of dioleoyl-phosphatidyl-choline (DOPC) were used as membrane models. PS-membrane interactions were deduced from analysis of the main DOPC (1)H-NMR resonances (choline and lipid chain signals). Initial membrane adsorption of the PSs was indicated by induced changes to the DOPC choline signal, i.e. a split into inner and outer choline peaks. Based on this parameter, the PSs could be classified into two groups, Type-A PSs causing a split and the Type-B PSs causing no split. A further classification into two subgroups each, A1, A2 and B1, B2 was based on the observed time-dependent changes of the main DOPC NMR signals following initial PS adsorption. Four different time-correlated patterns were found indicating different levels and rates of PS penetration into the hydrophobic membrane interior. The type of interaction was mainly affected by the amphiphilicity and the overall lipophilicity of the applied PS structures. In conclusion, the NMR data provided valuable structural and dynamic insights into the PS-membrane interactions which allow deriving the structural constraints for high membrane affinity and high membrane penetration of a given PS. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Physicians and scientists use a broad spectrum of terms to classify contrast media (CM)-induced adverse reactions. In particular, the designation of hypersensitivity reactions is quite varied. Consequently, comparisons of different papers dealing with this subject are difficult or even impossible. Moreover, general descriptions may lead to problems in understanding reactions in patients with a history of adverse CM-reactions, and in efficiently managing these patients. Therefore, the goal of this paper is to suggest an easy system to clearly classify these reactions. The proposed three-step systems (3SS) is built up as follows: step 1 exactly describes the clinical features, including their severity; step 2 categorizes the time point of the onset (immediate or nonimmediate); and step 3 generally classifies the reaction (hypersensitivity or nonhypersensitivity reaction). The 3SS may facilitate better understanding of the clinical manifestations of adverse CM reactions and may support the prevention of these reactions on the basis of personalized medicine approaches.