934 resultados para Classes of Analytic Functions
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The number of zeros in (- 1, 1) of the Jacobi function of second kind Q(n)((alpha, beta)) (x), alpha, beta > - 1, i.e. The second solution of the differential equation(1 - x(2))y (x) + (beta - alpha - (alpha + beta + 2)x)y' (x) + n(n + alpha + beta + 1)y(x) = 0,is determined for every n is an element of N and for all values of the parameters alpha > - 1 and beta > - 1. It turns out that this number depends essentially on alpha and beta as well as on the specific normalization of the function Q(n)((alpha, beta)) (x). Interlacing properties of the zeros are also obtained. As a consequence of the main result, we determine the number of zeros of Laguerre's and Hermite's functions of second kind. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Two methods for calculating inner products of Schur functions in terms of outer products and plethysms are given and they are easy to implement on a machine. One of these is derived from a recent analysis of the SO(8) proton-neutron pairing model of atomic nuclei. The two methods allow for generation of inner products for the Schur functions of degree up to 20 and even beyond.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Motivated by the recent solution of Karlin's conjecture, properties of functions in the Laguerre-Polya class are investigated. The main result of this paper establishes new moment inequalities fur a class of entire functions represented by Fourier transforms. The paper concludes with several conjectures and open problems involving the Laguerre-Polya class and the Riemann xi -function.
Resumo:
In this work the influence of two different iron sources, Fe(NO3)(3) and complexed ferrioxalate (FeOx), on the degradation efficiency of 4-chlorophenol (4CP), malachite green, formaldehyde, dichloroacetic acid (DCA) and the commercial products of the herbicides diuron and tebuthiuron was studied. The oxidation of 4CP, DCA, diuron and tebuthiuron shows a strong dependence on the iron source. While the 4CP degradation is favored by the use of Fe(NO3)(3), the degradation of DCA and the herbicides diuron and tebuthiuron is most efficient when ferrioxalate is used. on the other hand, the degradation of malachite green and formaldehyde is not very influenced by the iron source showing only a slight improvement when ferrioxalate is used. In the case of formaldehyde, DCA, diuron and tebuthiuron, despite of the additional carbon introduced by the use of ferrioxalate, higher mineralization percentages were observed, confirming the beneficial effect of ferrioxalate on the degradation of these compounds. The degradation of tebuthiuron was studied in detail using a shallow pond type solar flow reactor of 4.5 L capacity and 4.5 cm solution depth. Solar irradiation of tebuthiuron at a flow rate of 9 L h(-1), in the presence of 10.0 mmol L-1 H2O2 and 1.0 mmol L-1 ferrioxalate resulted in complete conversion of this herbicide and 70% total organic carbon removal. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The results in this paper are motivated by two analogies. First, m-harmonic functions in R(n) are extensions of the univariate algebraic polynomials of odd degree 2m-1. Second, Gauss' and Pizzetti's mean value formulae are natural multivariate analogues of the rectangular and Taylor's quadrature formulae, respectively. This point of view suggests that some theorems concerning quadrature rules could be generalized to results about integration of polyharmonic functions. This is done for the Tchakaloff-Obrechkoff quadrature formula and for the Gaussian quadrature with two nodes.
Resumo:
In this work we discuss some exactly solvable Klein-Gordon equations. We basically discuss the existence of classes of potentials with different nonrelativistic limits, but which shares the intermediate effective Schroedinger differential equation. We comment about the possible use of relativistic exact solutions as approximations for nonrelativistic inexact potentials. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Previous analyses of mitochondrial (mt)DNA and allozymes covering the range of the Iberian endemic golden-striped salamander, Chioglossa lusitanica, suggested a Pleistocene split of the historical species distribution into two population units (north and south of the Mondego river), postglacial expansion into the northernmost extant range, and secondary contact with neutral diffusion of genes close to the Mondego river. We extended analysis of molecular variation over the species range using seven microsatellite loci and the nuclear P-fibrinogen intron 7 (beta-fibint7). Both microsatellites and beta-fibint7 showed moderate to high levels of population structure, concordant with patterns detected with mtDNA and allozymes; and a general pattern of isolation-by-distance, contrasting the marked differentiation of two population groups suggested by mtDNA and allozymes. Bayesian multilocus analyses showed contrasting results as populations north and south of the Douro river were clearly differentiated based on microsatellites, whereas allozymes revealed differentiation north and south of the Mondego river. Additionally, decreased microsatellite variability in the north supported the hypothesis of postglacial colonization of this region. The well-documented evolutionary history of C. lusitanica, provides an excellent framework within which the advantages and limitations of different classes of markers can be evaluated in defining patterns of population substructure and inferring evolutionary processes across distinct spatio-temporal scales. The present study serves as a cautionary note for investigations that rely on a single type of molecular marker, especially when the organism under study exhibits a widespread distribution and complex natural history. (C) 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95, 371-387.
Resumo:
In Colombeau's theory, given an open subset Ω of ℝn, there is a differential algebra G(Ω) of generalized functions which contains in a natural way the space D′(Ω) of distributions as a vector subspace. There is also a simpler version of the algebra G,(Ω). Although this subalgebra does not contain, in canonical way, the space D′(Ω) is enough for most applications. This work is developed in the simplified generalized functions framework. In several applications it is necessary to compute higher intrinsic derivatives of generalized functions, and since these derivatives are multilinear maps, it is necessary to define the space of generalized functions in Banach spaces. In this article we introduce the composite function for a special class of generalized mappings (defined in open subsets of Banach spaces with values in Banach spaces) and we compute the higher intrinsic derivative of this composite function.
Resumo:
Weight records of Brazilian Nelore cattle, from birth to 630 d of age, recorded every 3 mo, were analyzed using random regression models. Independent variables were Legendre polynomials of age at recording. The model of analysis included contemporary groups as fixed effects and age of dam as a linear and quadratic covariable. Mean trends were modeled through a cubic regression on orthogonal polynomials of age. Up to four sets of random regression coefficients were fitted for animals' direct and maternal, additive genetic, and permanent environmental effects. Changes in measurement error variances with age were modeled through a variance function. Orders of polyno-mial fit from three to six were considered, resulting in up to 77 parameters to be estimated. Models fitting random regressions modeled the pattern of variances in the data adequately, with estimates similar to those from corresponding univariate analysis. Direct heritability estimates decreased after birth and tended to be lowest at ages at which maternal effect estimates tended to be highest. Maternal heritability estimates increased after birth to a peak around 110 to 120 d of age and decreased thereafter. Additive genetic direct correlation estimates between weights at standard ages (birth, weaning, yearling, and final weight) were moderate to high and maternal genetic and environmental correlations were consistently high. © 2001 American Society of Animal Science. All rights reserved.