924 resultados para Christian III, King of Denmark and Norway, 1503-1559.
Resumo:
A binary catalyst system of a chiral (R,R)-SalenCo(III)(2,4-dinitrophenoxy) (salen = N,N-bis(3,5-di-tert-butylsalicylidene)-1,2-diphenylethylenediimine) in conjunction with (4-dimethylamino)pyridine (DMAP) was developed to generate the copolymerization of carbon dioxide (CO2) and racemic propylene oxide (rac-PO). The influence of the molar ratio of catalyst components, the operating temperature, and reaction pressure on the yield as well as the molecular weight of polycarbonate were systematically investigated. High yield of turnover frequency (TOF) 501.2 h(-1) and high molecular weight of 70,400 were achieved at an appropriate combination of all variables. The structures of as-prepared products were characterized by the IR, H-1 NMR, C-13 NMR measurements. The linear carbonate linkage, highly regionselectivity and almost 100% carbonate content of the resulting polycarbonate were obtained with the help of these effective catalyst systems under facile conditions.
Resumo:
The extraction and stripping kinetics of yttrium(III) with bis(2,4,4-trimethylpentyl) phosphinic acid (Cyanex 272, HA) dissolved in heptane as an acid extractant have been investigated by constant interfacial cell with laminar flow. The experimental hydrodynamic conditions have been chosen so that the contribution of diffusion to the measured rate of reaction is minimized. The plot of interfacial area on the rate has shown a linear relationship, which makes the interface the most probable local for the chemical reactions. At the same time, the extraction thermodynamic and kinetic methods are compared to determine the equilibrium extraction constant. A rate equation and the rate-determining step of the extraction and stripping of yttrium(III) have also been obtained, respectively.
Resumo:
Four new polymeric lanthanide(III) complexes of nicotinic acid N-oxide and isonicotinic acid N-oxide have been synthesized and structurally determined. In the isomorphous compounds [(Ln(L-1)(3) (H2O)(2))(n)]. 4nH(2)O(HL1 = nicotinic acid N-oxide; Ln = Eu, 1; Ln = Er, 2) the lanthanide(III) ions form infinite double chains along the b direction through the coordination of bridging carboxylate and N-oxide groups. The chains are cross-linked through hydrogen bonds between aqua ligands and uncoordinated N-oxide groups and between aqua ligands and lattice water molecules, to form a three-dimensional network. [(Eu(L-2)(2)-(H2O)(4))(n)](NO3)(n). nH(2)O (HL2 = isonicotinic acid N-oxide, 3) has a polymeric structure in which the europium (III) ions are connected into infinite chains by pairs of syn-syn carboxylate groups. Adjacent chains are interlinked by hydrogen bonds between aqua ligands and N-oxide groups to form a layer parallel to the (100) plane, and such layers are connected by hydrogen bonds between nitrate anions and aqua ligands, and between oxide groups and lattice water molecules, into a three-dimensional network. In [(Er-2(L-2)(4)(H2O)(10))](NO3)(2). H2O, 4, dinuclear units are inter-linked into a three-dimensional network through hydrogen bonding between aqua ligands and N-oxide groups of both bidentate bridging and unidentate L-2 ligands. Factors affecting the formation of coordination chains and dinuclear units are discussed. Luminescence properties of 1 and 3 have also been studied. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Based on the complex crystal chemical bond theory, the formula of Liu and Cohen's, which is only suitable for one type of bond, has been extended to calculate the bulk modulus of ternary chalcopyrite A(I)B(III)C(2)(VI) and A(II)B(IV)C(2)(V) which contains two types of bonds. The calculated results are in fair agreement with the previous theoretical values reported and experimental values. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
The extraction equilibria of Sc(III), Zr(IV), Ti(IV), Th(IV), Fe(III) and Lu(III) from sulphuric or hydrochloric acid media by Cyanex 923 (mixture of straight chain alkylated phosphine oxides) and Cyanex 925 (mixture of branched chain alkylated phosphine oxides) were studied at various aqueous acidities. The extractant Cyanex 923 demonstrated better scandium loading and selectivity for TI(IV). Fe(III) and Lu(III) than Cyanex 925. The effects of extractant concentration on the extractions of sulphuric acid and Sc(III) by Cyanex 923 were examined. The stoichiometries of the extraction reactions were postulated based on slope analysis. The experimental results indicate that Cyanex 923 can be employed to recover scandium directly from the hydrolytic mother solution arising from TiO2 production via the sulphate process. The parameters studied were scandium loading capacity, phase ratio, concentrations of Ti(IV) scrubbing and Sc(III) stripping agents. A new solvent extraction technology of scandium recovery was developed. The purity of the final Sc(III) product is above 95% with a yield > 94%. (C) 1998 Elsevier Science B.V.
Resumo:
[GRAPHICS]
Resumo:
Accepted Version
Resumo:
In this work, the properties of strained tetrahedrally bonded materials are explored theoretically, with special focus on group-III nitrides. In order to do so, a multiscale approach is taken: accurate quantitative calculations of material properties are carried out in a quantum first-principles frame, for small systems. These properties are then extrapolated and empirical methods are employed to make predictions for larger systems, such as alloys or nanostructures. We focus our attention on elasticity and electric polarization in semiconductors. These quantities serve as input for the calculation of the optoelectronic properties of these systems. Regarding the methods employed, our first-principles calculations use highly- accurate density functional theory (DFT) within both standard Kohn-Sham and generalized (hybrid functional) Kohn-Sham approaches. We have developed our own empirical methods, including valence force field (VFF) and a point-dipole model for the calculation of local polarization and local polarization potential. Our local polarization model gives insight for the first time to local fluctuations of the electric polarization at an atomistic level. At the continuum level, we have studied composition-engineering optimization of nitride nanostructures for built-in electrostatic field reduction, and have developed a highly efficient hybrid analytical-numerical staggered-grid computational implementation of continuum elasticity theory, that is used to treat larger systems, such as quantum dots.
Resumo:
Atomic layer deposition (ALD) is now used in semiconductor fabrication lines to deposit nanometre-thin oxide films, and has thus enabled the introduction of high-permittivity dielectrics into the CMOS gate stack. With interest increasing in transistors based on high mobility substrates, such as GaAs, we are investigating the surface treatments that may improve the interface characteristics. We focus on incubation periods of ALD processes on III-V substrates. We have applied first principles Density Functional Theory (DFT) to investigate detailed chemistry of these early stages of growth, specifically substrate and ALD precursor interaction. We have modelled the ‘clean-up’ effect by which organometallic precursors: trimethylaluminium (TMA) or hafnium and titanium amides clean arsenic oxides off the GaAs surface before ALD growth of dielectric commences and similar effect on Si3N4 substrate. Our simulations show that ‘clean-up’ of an oxide film strongly depends on precursor ligand, its affinity to the oxide and the redox character of the oxide. The predominant pathway for a metalloid oxide such as arsenic oxide is reduction, producing volatile molecules or gettering oxygen from less reducible oxides. An alternative pathway is non-redox ligand exchange, which allows non-reducible oxides (e.g. SiO2) to be cleaned-up. First principles study shows also that alkylamides are more susceptible to decomposition rather than migration on the oxide surface. This improved understanding of the chemical principles underlying ‘clean-up’ allows us to rationalize and predict which precursors will perform the reaction. The comparison is made between selection of metal chlorides, methyls and alkylamides precursors.
Resumo:
A representative sample of older Danes were interviewed about experiences from the German occupation of Denmark in World War II. The number of participants with flashbulb memories for the German invasion (1940) and capitulation (1945) increased with participants' age at the time of the events up to age 8. Among participants under 8 years at the time of their most traumatic event, age at the time correlated positively with the current level of posttraumatic stress reactions and the vividness of stressful memories and their centrality to life story and identity. These findings were replicated in Study 2 for self-nominated stressful events sampled from the entire life span using a representative sample of Danes born after 1945. The results are discussed in relation to posttraumatic stress disorder and childhood amnesia.
Resumo:
B3-LYP/cc-pVDZ calculations of the gas-phase structure and vibrational spectra of the isolated molecule cyclo(L-Ser-L-Ser), a cyclic di-amino acid peptide (CDAP), were carried out by assuming C-2 symmetry. It is predicted that the minimum-energy structure is a boat conformation for the diketopiperazine (DKP) ring with both L-Beryl side chains being folded slightly above the ring. An additional structure of higher energy (15.16 kJ mol(-1)) has been calculated for a DKP ring with a planar geometry, although in this case two fundamental vibrations have been calculated with imaginary wavenumbers. The reported X-ray crystallographic structure of cyclo(L-Ser-L-Ser), shows that the DKP ring displays a near-planar conformation, with both the two L-Beryl side chains being folded above the ring. It is hypothesized that the crystal packing forces constrain the DKP ring in a planar conformation and it is probable that the lower energy boat conformation may prevail in the aqueous environment. Raman scattering and Fourier-transform infrared (FT-IR) spectra of solid state and aqueous solution samples of cyclo(L-Ser-L-Ser) are reported and discussed. Vibrational band assignments have been made on the basis of comparisons with the calculated vibrational spectra and band wavenumber shifts upon deuteration of labile protons. The experimental Raman and IR results for solid-state samples show characteristic amide I vibrations which are split (Raman:1661 and 1687 cm(-1), IR:1666 and 1680 cm(-1)), possibly due to interactions between molecules in a crystallographic unit cell. The cis amide I band is differentiated by its deuterium shift of ~ 30 cm(-1), which is larger than that previously reported for trans amide I deuterium shifts. A cis amide II mode has been assigned to a Raman band located at 1520 cm(-1). The occurrence of this cis amide II mode at a wavenumber above 1500 cm(-1) concurs with results of previously examined CDAP molecules with low molecular weight substituents on the C-alpha atoms, and is also indicative of a relatively unstrained DKP ring.
Resumo:
A new series of iron(III) complexes [Fe(L(1))(HL(1))], [Fe(L(1)) Cl]; [H2L(1) = N'-(2-methoxythiobenzoyl)pyridine-2-carbohydrazide], [Fe(L(2))(acac)], [Fe(HL(2))2 Cl]; [H2L(2) = N'-(4-methoxythiobenzoyl)pyridine-2-carbohydrazide] and [Fe(L(3)) (acac)]; [H2L(3) = N'-(2-hydroxythiobenzoyl)pyridine-2-carbohydrazide] were prepared by stirring/refluxing/mixing the respective ligand with FeCl3/Fe(acac)3 in chloroform/methanol. All the compounds were characterized by elemental analyses, magnetic susceptibility, IR, UV and Mossbauer spectral data. The complexes high/low spin state and have tetrahedral/octahedral geometry.