998 resultados para Chlorite
Resumo:
This thesis reports on a research into the progressive development of fibrous aggregates, e.g. calcite, quartz and mica crystals in veins and strain fringes. The study is based on microstructural analysis of natural examples and on computer experiments. Investigation of fibrous looking elongate crystals in striped bedding-veins from the Orobic Alps, Italy indicate that these crystals do not track the opening trajectory of the veins but are oriented at an angle of up to 80° to the opening direction. Microstructural analysis of quartz, calcite and chlorite fibres in antitaxial strain fringes indicate that most strain fringes contain complex intergrowth of tracking (displacement-controlled) and non-tracking (face-controlled) fibres. To explain these growth features the computer program
Resumo:
P-T conditions, paragenetic studies and the relation between mineral growth, deformation and - when possible- isograd minerals have been used to describe the type of metamorphism involved within lower units of the southern Menderes Massif of the Anatolide Belt in western Turkey. The study areas mainly consist of Proterozoic orthogneiss and surrounding schists of presumed Paleozoic age. Both units are seen as nappes in the southern study area, the Çine and the Selimiye nappe, on the whole corresponding to Proterozoic orthogneiss and surrounding schists, respectively. The Çine and Selimiye nappes are part of a complex geological structure within the core series of the Menderes Massif. Their emplacement under lower greenschist facies conditions, would result from closure of the northern Neo-Thethys branch during the Eocene. These two nappes are separated by a major tectonic structure, the Selimiye shear zone, which records top-to-the-S shearing under greenschist facies conditions. Amphibolite to upper amphibolite facies metamorphism is widely developed within the metasedimentary rocks of the Çine nappe whereas no metamorphism exceeding lower amphibolite facies has been observed in the Selimiye nappe. In the southern margin of the Çine Massif, around Selimiye and Millas villages, detailed sampling has been undertaken in order to map mineral isograds within the Selimiye nappe and to specify P-T conditions in this area. The data collected in this area reveals a global prograde normal erosion field gradient from south to north and toward the orthogneiss. The mineralogical parageneses and P-T estimates are correlated with Barrovian-type metamorphism. A jump of P-T conditions across the Selimiye shear zone has been identified and estimated c. 2 kbar and 100 °C which evidences the presence of amphibolite facies metasedimentary rocks near the orthogneiss. Metasedimentary rocks from the overlying Selimiye nappe have maximum P-T conditions of c. 4-5 kbar and c. 525 °C near the base of the nappe. Metasedimentary rocks from the Çine nappe underneath the Selimiye shear zone record maximum P-T conditions of about 7 kbar and >550 °C. Kinematic indicators in both nappes consistently show a top-S shear sense. Metamorphic grade in the Selimiye nappe decreases structurally upwards as indicated by mineral isograds defining the garnet-chlorite zone at the base, the chloritoid-biotite zone and the biotite-chlorite zone at the top of the nappe. The mineral isograds in the Selimiye nappe run parallel to the regional SR foliation. 40Ar/39Ar mica ages indicate an Eocene age of metamorphism in the Selimiye nappe and underneath the Çine nappe in this area. Metasedimentary rocks of the Çine nappe 20-30 km north of the Selimiye shear zone record maximum P-T conditions of 8-11 kbar and 600-650 °C. Kinematic indicators show mainly top-N shear sense associated with prograde amphibolite facies metamorphism. An age of about 550 Ma could be indicated for amphibolite facies metamorphism and associated top-N shear in the orthogneiss and metasedimentary rocks of the Çine nappe. However, there is no evidence for polymetamorphism in the 6 metasedimentary rocks of the Çine nappe, making tectonic interpretations about late Neoproterozoic to Cambrian and Tertiary metamorphic events speculative. In the western margin of the Çine Massif metamorphic mineral parageneses and pressure– temperature conditions lead to similar conclusion regarding the erosion field gradient, prograde normal toward the orthogneiss. The contact between orthogneiss and surrounding metasedimentary rocks is mylonitic and syn-metamorphism. P-T estimates are those already observed within the Selimiye nappe and correlated with lower amphibolite facies parageneses. Finally additional data in the eastern part and a general paragenetic study within the Menderes Massif lower units, the Çine and the Selimiye nappes, strongly suggest a single Barrovian-type metamorphism predating Eocene emplacement of the high pressure–low temperature Lycean and Cycladic blueschist nappes. Metamorphic mineral parageneses and pressure–temperature conditions do not support the recently proposed model of high pressure–low temperature metamorphic overprinting, which implies burial of the lower units of the Menderes Massif up to depth of 30 km, as a result of closure of the Neo-Tethys. According to the geochronological problem outlined during this thesis, there are two possible schemes: either Barrovian-type metamorphism is Proterozoic in age and part of the sediments from Selimiye nappe (lower amphibolite facies) has to be proterozoic of age too, or Barrovian-type metamorphism in Eocene of age. In the first case the structure observed now in the core series would correspond to simple exhumation of Proterozoic basement. In the latter case a possible correlation with closure of Neo-Tethys (sensu stricto, southern branch) is envisaged.
Resumo:
In this thesis foliation boudinage and related structures have been studied based on field observations and numerical modeling. Foliation boudinage occurs in foliated rocks independent of lithology contrast. The developing structures are called ‘Foliation boudinage structures (FBSs)’ and show evidence for both ductile and brittle deformation. They are recognized in rocks by perturbations in monotonous foliation adjacent to a central discontinuity, mostly filled with vein material. Foliation boudinage structures have been studied in the Çine Massif in SW-Turkey and the Furka Pass-Urseren Zone in central Switzerland. Four common types have been distinguished in the field, named after vein geometries in their boudin necks in sections normal to the boudin axis: lozenge-, crescent-, X- and double crescent- type FBSs. Lozengetype FBSs are symmetric and characterized by lozenge-shaped veins in their boudin neck with two cusps facing opposite sides. A symmetrical pair of flanking folds occurs on the two sides of the vein. Crescent-type FBSs are asymmetric with a single smoothly curved vein in the boudin neck, with vein contacts facing to one side. X- and double crescent- type FBSs are asymmetric. The geometry of the neck veins resembles that of cuspate-lobate structures. The geometry of flanking structures is related to the shape of the veins. The veins are mostly filled with massive quartz in large single crystals, commonly associated with tourmaline, feldspar and biotite and in some cases with chlorite. The dominance of large facetted single quartz crystals and spherulitic chlorite in the veins suggest that the minerals grew into open fluidfilled space. FLAC experiments show that fracture propagation during ductile deformation strongly influences the geometry of developing veins. The cusps of the veins are better developed in the case of propagating fractures. The shape of the boudin neck veins in foliation boudinage depends on the initial orientation and shape of the fracture, the propagation behaviour of the fracture, the geometry of bulk flow, and the stage at which mineral filling takes place. A two dimensional discrete element model was used to study the progressive development of foliation boudinage structures and the behavior of visco-elastic material deformed under pure shear conditions. Discrete elements are defined by particles that are connected by visco-elastic springs. Springs can break. A number of simulations was Abstract vii performed to investigate the effect of material properties (Young’s modulus, viscosity and breaking strength) and anisotropy on the developing structures. The models show the development of boudinage in single layers, multilayers and in anisotropic materials with random mica distribution. During progressive deformation different types of fractures develop from mode I, mode II to the combination of both. Voids develop along extension fractures, at intersections of conjugate shear fractures and in small pull-apart structures along shear fractures. These patterns look similar to the natural examples. Fractures are more localized in the models where the elastic constants are low and the competence contrast is high between the layers. They propagate through layers where the constants are high and the competence contrast is relatively low. Flow localize around these fractures and voids. The patterns similar to symmetric boudinage structures and extensional neck veins (e.g. lozenge type) more commonly develop in the models with lower elastic constants and anisotropy. The patterns similar to asymmetric foliation boudinage structures (e.g. X-type) develop associated with shear fractures in the models where elastic constants and anisotropy of the materials are relatively high. In these models boudin neck veins form commonly at pull-aparts along the shear fractures and at the intersection of fractures.
Resumo:
The Variscan basement of Northern Apennines (Northern Italy) is a polymetamorphic portion of continental crust. This thesis investigated the metamorphic history of this basement occurring in the Cerreto Pass, in the Pontremoli well, and in the Pisani Mountains. The study comprised fieldwork, petrography and microstructural analysis, determination of the bulk rock and mineral composition, thermodynamic modelling, conventional geothermobarometry, monazite chemical dating and Ar/Ar dating of muscovite. The reconstructed metamorphic evolution of the selected samples allowed to define a long-lasting metamorphic history straddling the Variscan and Alpine orogenesis. Some general petrological issues generally found in low- to medium-grade metapelites were also tackled: (i) With middle-grade micaschist it is possible to reconstruct a complete P-T-D path by combining microstructural analysis and thermodynamic modelling. Prekinematic white mica may preserve Mg-rich cores related to the pre-peak stage. Mn-poor garnet rim records the peak metamorphism. Na-rich mylonitic white mica, the XFe of chlorite and the late paragenesis may constrain the retrograde stage. (ii) Metapelites may contain coronitic microstructures of apatite + Th-silicate, allanite and epidote around unstable monazite grains. Chemistry and microstructure of Th-rich monazite relics surrounded by this coronitic microstructure may suggest that monazite mineral was inherited and underwent partial dissolution and fluid-aided replacement by REE-accessory minerals at 500-600°C and 5-7 kbar. (iii) Fish-shaped white mica is not always a (prekinematic) mica-fish. Observed at high-magnification BSE images it may consist of several white mica formed during a mylonitic stage. Hence, the asymmetric foliation boudin is a suitable microstructure to obtain geochronological information about the shearing stage. (iv) Thermodynamic modelling of a hematite-rich metasedimentary rock fails to reproduce the observed mineral compositions when the bulk Fe2O3 is neglected or determined through titration. The mismatch between observed and computed mineral compositions and assemblage is resolved by tuning the effective ferric iron content by P-XFe2O3 diagrams.
Resumo:
Numerical simulations based on plans for a deep geothermal system in Basel, Switzerland are used here to understand chemical processes that occur in an initially dry granitoid reservoir during hydraulic stimulation and long-term water circulation to extract heat. An important question regarding the sustainability of such enhanced geothermal systems (EGS), is whether water–rock reactions will eventually lead to clogging of flow paths in the reservoir and thereby reduce or even completely block fluid throughput. A reactive transport model allows the main chemical reactions to be predicted and the resulting evolution of porosity to be tracked over the expected 30-year operational lifetime of the system. The simulations show that injection of surface water to stimulate fracture permeability in the monzogranite reservoir at 190 °C and 5000 m depth induces redox reactions between the oxidised surface water and the reduced wall rock. Although new calcite, chlorite, hematite and other minerals precipitate near the injection well, their volumes are low and more than compensated by those of the dissolving wall-rock minerals. Thus, during stimulation, reduction of injectivity by mineral precipitation is unlikely. During the simulated long-term operation of the system, the main mineral reactions are the hydration and albitization of plagioclase, the alteration of hornblende to an assemblage of smectites and chlorites and of primary K-feldspar to muscovite and microcline. Within a closed-system doublet, the composition of the circulated fluid changes only slightly during its repeated passage through the reservoir, as the wall rock essentially undergoes isochemical recrystallization. Even after 30 years of circulation, the calculations show that porosity is reduced by only ∼0.2%, well below the expected fracture porosity induced by stimulation. This result suggests that permeability reduction owing to water–rock interaction is unlikely to jeopardize the long-term operation of deep, granitoid-hosted EGS systems. A peculiarity at Basel is the presence of anhydrite as fracture coatings at ∼5000 m depth. Simulated exposure of the circulating fluid to anhydrite induces a stronger redox disequilibrium in the reservoir, driving dissolution of ferrous minerals and precipitation of ferric smectites, hematite and pyrite. However, even in this scenario the porosity reduction is at most 0.5%, a value which is unproblematic for sustainable fluid circulation through the reservoir.
Resumo:
The multiple high-pressure (HP), low-temperature (LT) metamorphic units of Western and Central Anatolia offer a great opportunity to investigate the subduction- and continental accretion-related evolution of the eastern limb of the long-lived Aegean subduction system. Recent reports of the HP–LT index mineral Fe-Mg-carpholite in three metasedimentary units of the Gondwana-derived Anatolide–Tauride continental block (namely the Afyon Zone, the Ören Unit and the southern Menderes Massif) suggest a more complicated scenario than the single-continental accretion model generally put forward in previous studies. This study presents the first isotopic dates (white mica 40Ar–39Ar geochronology), and where possible are combined with P–T estimates (chlorite thermometry, phengite barometry, multi-equilibrium thermobarometry), on carpholite-bearing rocks from these three HP–LT metasedimentary units. It is shown that, in the Afyon Zone, carpholite-bearing assemblages were retrogressed through greenschist-facies conditions at c. 67–62 Ma. Early retrograde stages in the Ören Unit are dated to 63–59 Ma. In the Kurudere–Nebiler Unit (HP Mesozoic cover of the southern Menderes Massif), HP retrograde stages are dated to c. 45 Ma, and post-collisional cooling to c. 26 Ma. These new results support that the Ören Unit represents the westernmost continuation of the Afyon Zone, whereas the Kurudere–Nebiler Unit correlates with the Cycladic Blueschist Unit of the Aegean Domain. In Western Anatolia, three successive HP–LT metamorphic belts thus formed: the northernmost Tavşanlı Zone (c. 88–82 Ma), the Ören–Afyon Zone (between 70 and 65 Ma), and the Kurudere–Nebiler Unit (c. 52–45 Ma). The southward younging trend of the HP–LT metamorphism from the upper and internal to the deeper and more external structural units, as in the Aegean Domain, points to the persistence of subduction in Western Anatolia between 93–90 and c. 35 Ma. After the accretion of the Menderes–Tauride terrane, in Eocene times, subduction stopped, leading to continental collision and associated Barrovian-type metamorphism. Because, by contrast, the Aegean subduction did remain active due to slab roll-back and trench migration, the eastern limb (below Southwestern Anatolia) of the Hellenic slab was dramatically curved and consequently teared. It therefore is suggested that the possibility for subduction to continue after the accretion of buoyant (e.g. continental) terranes probably depends much on palaeogeography.
Resumo:
The Effingen Member is a low-permeability rock unit of Oxfordian age (ca. 160 Ma) that occurs across northern Switzerland. It comprises sandy calcareous marls and (argillaceous) limestones. This report describes the hydrogeochemistry, mineralogy and supporting physical properties of the Effingen Member in three boreholes in the Jura-Südfuss area: Oftringen, Gösgen and Küttigen, where it is 220–240 m thick. The top of the Effingen Member is at 420, 66 and 32 m depths at the three sites. Core materials are available from Oftringen and Gösgen, whereas information from Küttigen is limited to cuttings, in-situ hydrogeological testing and geophysical logging. Hydrogeological boundaries of the Effingen Member vary between locations. Ground-water flows were identified during drilling at the top (Geissberg Member), but not at the base, of the Effingen Member at Oftringen, at the base (Hauptrogenstein Formation) of the Effingen Member at Gösgen, and in a limestone layer (Gerstenhübel unit) within the Effingen Member at Küttigen. The marls and limestones of the Effingen Member have carbonate contents of 46–91 wt.-% and clay-mineral contents of 5–37 wt.-%. Pyrite contents are up to 1.6 wt.-%, but no sulphate minerals were detected by routine analyses. Clay minerals are predominantly mixed-layer illite-smectite, illite and kaolinite, with sporadic traces of chlorite and smectite. Veins filled with calcite ± celestite occur through the Effingen Member at Oftringen but not at Gösgen or Küttigen. They formed at 50–70 ºC from externally derived fluids, probably of Miocene age. Water contents are 0.7–4.2 wt.-%, corresponding to a water-loss porosity range of 1.9–10.8 vol.-%. Specific surface areas, measured by the BET method, are 2–30 m2/g, correlating with clay-mineral contents. Water activity has been measured and yielded surprisingly low values down to 0.8. These cannot be explained by pore-water salinity alone and include other effects, such as changes in the fabric due to stress release or partial saturation. Observed variations in measurements are not fully understood. Cation exchange capacity (CEC) and exchangeable cation populations have been studied by the Ni-en method. CEC, derived from the consumption of the index cation Ni, is 9–99 meq/kgrock at a solid:liquid ratio of 1, correlating with the clay-mineral content. Cation concentrations in Ni-en extract solutions are in the order Na+≥Ca2+>Mg2+>K+>Sr2+. However, the analytical results from the Ni-en extractions have additional contributions from cations originating from pore water and from mineral dissolution reactions that occurred during extraction, and it was not possible to reliably quantify these contributions. Therefore, in-situ cation populations and selectivity coefficients could not be derived. A suite of methods have been used for characterising the chemical compositions of pore waters in the Effingen Member. Advective displacement was used on one sample from each Oftringen and Gösgen and is the only method that produces results that approach complete hydrochemical compositions. Aqueous extraction was used on core samples from these two boreholes and gives data only for Cl- and, in some cases, Br-. Out-diffusion was used on core samples from Oftringen and similarly gives data for Cl- and Br- only. For both aqueous extraction and out-diffusion, reaction of the experimental water with rock affected concentrations of cations, SO42 and alkalinity in experimental solutions. Another method, centrifugation, failed to extract pore water. Stable isotope ratios (δ18O and δ2H) of pore waters in core samples from Oftringen were analysed by the diffusive exchange method and helium contents of pore water in Oftringen samples were extracted for mass spectrometric analysis by quantitative outgassing of preserved core samples. Several lines of evidence indicate that drillcore samples might not have been fully saturated when opened and subsampled in the laboratory. These include comparisons of water-loss porosities with physical porosities, water-activity measurements, and high contents of dissolved gas as inferred from ground-water samples. There is no clear proof of partial saturation and it is unclear whether this might represent in-situ conditions or is due to exsolution of gas due to the pressure release since drilling. Partial saturation would have no impact on the recalculation of pore-water compositions from aqueous extraction experiments using water-loss porosity data. The largest uncertainty in the pore-water Cl- concentrations recalculated from aqueous extraction and out-diffusion experiments is the magnitude of the anion-accessible fraction of water-loss porosity. General experience of clay-mineral rich formations suggests that the anion-accessible porosity fraction is very often about 0.5 and generally in a range of 0.3 to 0.6 and tends to be inversely correlated with clay-mineral contents. Comparisons of the Cl- concentration in pore water obtained by advective displacement with that recalculated from aqueous extraction of an adjacent core sample suggests a fraction of 0.27 for an Oftringen sample, whereas the same procedure for a Gösgen sample suggests a value of 0.64. The former value for anion-accessible porosity fraction is presumed to be unrepresentative given the local mineralogical heterogeneity at that depth. Through-diffusion experiments with HTO and 36Cl- suggest that the anion-accessible porosity fraction in the Effingen Member at Oftringen and Gösgen is around 0.5. This value is proposed as a typical average for rocks of the Effingen Member, bearing in mind that it varies on a local scale in response to the heterogeneity of lithology and pore-space architecture. The substantial uncertainties associated with the approaches to estimating anion-accessible porosity propagate into the calculated values of in-situ pore-water Cl- concentrations. On the basis of aqueous extraction experiments, and using an anion-accessible porosity fraction of 0.5, Cl- concentrations in the Effingen Member at Oftringen reach a maximum of about 14 g/L in the centre. Cl- decreases upwards and downwards from that, forming a curved depth profile. Cl- contents in the Effingen Member at Gösgen increase with depth from about 3.5 g/L to about 14 g/L at the base of the cored profile (which corresponds to the centre of the formation). Out-diffusion experiments were carried out on four samples from Oftringen, distributed through the Effingen Member. Recalculated Cl- concentrations are similar to those from aqueous extraction for 3 out of the 4 samples, and somewhat lower for one sample. Concentrations of other components, i.e. Na+, K+, Ca2+, Mg2+, Sr2+, SO42- and HCO3- cannot be obtained from the aqueous extraction and out-diffusion experimental data because of mineral dissolution and cation exchange reactions during the experiments. Pore-water pH also is not constrained by those extraction experiments. The only experimental approach to obtain complete pore-water compositions for samples from Oftringen and Gösgen is advective displacement of pore water. The sample from Oftringen used for this experiment is from 445 m depth in the upper part of the Effingen Member and gave eluate with 16.5 g/L Cl- whereas aqueous extraction from a nearby sample indicated about 9 g/L Cl-. The sample from Gösgen used for advective displacement is from 123 m depth in the centre of the Effingen Member sequence and gave eluate with about 9 g/L Cl- whereas aqueous extraction gave 11.5 g/L Cl-. In both cases the pore waters have Na-(Ca)-Cl compositions and SO42- concentrations of about 1.1 g/L. The Gösgen sample has a Br/Cl ratio similar to that of sea water, whereas this ratio is lower for the Oftringen sample. Taking account of uncertainties in the applied experimental approaches, it is reasonable to place an upper limit of ca. 20 g/L on Cl- concentration for pore water in the Effingen Member in this area. There are major discrepancies between pore-water SO42- concentrations inferred from aqueous extraction or out-diffusion experiments and those obtained from advective displacement in both the Oftringen and Gösgen cases. A general conclusion is that all or at least part of the discrepancies are attributable to perturbation of the sulphur system and enhancement of SO42- by sulphate mineral dissolution and possibly minor pyrite oxidation during aqueous extraction and out-diffusion. Therefore, data for SO42- calculated from those pore-water sampling methods are considered not to be representative of in-situ conditions. A reference pore-water composition was defined for the Effingen Member in the Jura Südfuss area. It represents the probable upper limits of Cl- contents and corresponding anion and cation concentrations that are reasonably constrained by experimental data. Except for Cl- and possibly Na+ concentrations, this composition is poorly constrained especially with respect to SO42- and Ca2+ concentrations, and pH and alkalinity. Stable isotope compositions, δ18O and δ2H, of pore waters in the Effingen Member at Oftringen plot to the right of the meteoric water line, suggesting that 18O has been enriched by water-rock exchange, which indicates that the pore waters have a long residence time. A long residence time of pore water is supported by the level of dissolved 4He that has accumulated in pore water of the Effingen Member at Oftringen. This is comparable with, or slightly higher than, the amounts of 4He in the Opalinus Clay at Benken. Ground waters were sampled from flowing zones intersected by boreholes at the three locations. The general interpretation is that pore waters and ground-water solutes may have similar origins in Mesozoic and Cenozoic brackish-marine formations waters, but ground-water solutes have been diluted rather more than pore waters by ingress of Tertiary and Quaternary meteoric waters. The available hydrochemical data for pore waters from the Effingen Member at these three locations in the Jura-Südfuss area suggest that the geochemical system evolved slowly over geological periods of time, in which diffusion was an important mechanism of solute transport. The irregularity of Cl- and δ18O profiles and spatial variability of advective ground-water flows in the Malm-Dogger system suggests that palaeohydrogeological and hydrochemical responses to changing tectonic and surface environmental conditions were complex.
Resumo:
In 1884, Lorenzen proposed the formula MgAI2SiO6 for his new mineral kornerupine from Fiskenæsset and did not suspect it to contain boron. Lacroix and de Gramont (1919) reported boron in Fiskenæsset kornerupine, while Herd (1973) found none. New analyses (ion microprobe mass analyser and spectrophotometric) of kornerupine in three specimens from the type locality, including the specimens analysed by Lorenzen and Herd, indicate the presence of boron in all three, in amounts ranging from 0.50 to 1.44 wt.% B203, e.g. (Li0.04 Na0.01 Ca0.01) (Mg3.49 Mn0.01 Fe0.17 Ti0.01 Al5.64)Σ9.30 (Si3.67 Al1.02 B0.31)Σ5 O21 (OH0.99 F0.01) for Lorenzen's specimen. Textures and chemical compositions suggest that kornerupine crystallized in equilibrium in the following assemblages, all with anorthite (An 92-95) and phlogopite (XFe = atomic Fe/(Fe + Mg) = 0.028-0.035): (1) kornerupine (0.045)-gedrite (0.067); (2) kornerupine (0.038-0.050)-sapphirine (0.032-0.035); and (3) kornerupine (0.050)-hornblende. Fluorine contents of kornerupine range from 0.01 to 0.06%, of phlogopite, from 0.09 to 0.10%. In the first assemblage, sapphirine (0.040) and corundum are enclosed in radiating bundles of kornerupine; additionally sapphirine, corundum, and/or gedrite occur with chlorite and pinite (cordierite?) as breakdown products of kornerupine. Kornerupine may have formed by reactions such as: gedrite + sapphirine + corundum + B203 (in solution) + H20 = kornerupine + anorthite + Na-phlogopite under conditions of the granulite facies. Boron for kornerupine formation was most likely remobilized by hydrous fluids from metasedimentary rocks occurring along the upper contact of the Fiskenæsset gabbro-anorthosite complex with amphibolite.
Resumo:
This study presents an integrated mineralogical-geochemical data base on fine-grained sediments transported by all major rivers of southern Africa, including the Zambezi, Okavango, Limpopo, Olifants, Orange and Kunene. Clay mineralogy, bulk geochemistry, Sr and Nd isotopic signatures of river mud, considered as proxy of suspended load, are used to investigate the influence of source-rock lithology and weathering intensity on the composition of clay and silt produced in subequatorial to subtropical latitudes. Depletion in mobile alkali and alkaline-earth metals, minor in arid Namibia, is strong in the Okavango, Kwando and Upper Zambezi catchments, where recycling is also extensive. Element removal is most significant for Na, and to a lesser extent for Sr. Depletion in K, Ca and other elements, negligible in Namibia, is moderate elsewhere. The most widespread clay minerals are smectite, dominant in muds derived from Karoo or Etendeka flood basalts, or illite and chlorite, dominant in muds derived from metasedimentary rocks of the Damara Orogen or Zimbabwe Craton. Kaolinite represents 30-40% of clay minerals only in Okavango and Upper Zambezi sediments sourced in humid subequatorial Angola and Zambia. After subtracting the effects of recycling and of local accumulation of authigenic carbonates in soils, the regional distribution of clay minerals and chemical indices consistently reflect weathering intensity primarily controlled by climate. Bulk geochemistry identifies most clearly volcaniclastic sediments and mafic sources in general, but cannot discriminate the other sources of detritus in detail. Instead, Sr and Nd isotopic fingerprints are insensitive to weathering, and thus mirror faithfully the tectonic structure of the southern African continent. Isotopic tools thus represent a much firmer basis than bulk geochemistry or clay mineralogy in the provenance study of mudrocks.
Resumo:
Experience is lacking with mineral scaling and corrosion in enhanced geothermal systems (EGS) in which surface water is circulated through hydraulically stimulated crystalline rocks. As an aid in designing EGS projects we have conducted multicomponent reactive-transport simulations to predict the likely characteristics of scales and corrosion that may form when exploiting heat from granitoid reservoir rocks at ∼200 °C and 5 km depth. The specifications of an EGS project at Basel, Switzerland, are used to constrain the model. The main water–rock reactions in the reservoir during hydraulic stimulation and the subsequent doublet operation were identified in a separate paper (Alt-Epping et al., 2013b). Here we use the computed composition of the reservoir fluid to (1) predict mineral scaling in the injection and production wells, (2) evaluate methods of chemical geothermometry and (3) identify geochemical indicators of incipient corrosion. The envisaged heat extraction scheme ensures that even if the reservoir fluid is in equilibrium with quartz, cooling of the fluid will not induce saturation with respect to amorphous silica, thus eliminating the risk of silica scaling. However, the ascending fluid attains saturation with respect to crystalline aluminosilicates such as albite, microcline and chlorite, and possibly with respect to amorphous aluminosilicates. If no silica-bearing minerals precipitate upon ascent, reservoir temperatures can be predicted by classical formulations of silica geothermometry. In contrast, Na/K concentration ratios in the production fluid reflect steady-state conditions in the reservoir rather than albite–microcline equilibrium. Thus, even though igneous orthoclase is abundant in the reservoir and albite precipitates as a secondary phase, Na/K geothermometers fail to yield accurate temperatures. Anhydrite, which is present in fractures in the Basel reservoir, is predicted to dissolve during operation. This may lead to precipitation of pyrite and, at high exposure of anhydrite to the circulating fluid, of hematite scaling in the geothermal installation. In general, incipient corrosion of the casing can be detected at the production wellhead through an increase in H2(aq) and the enhanced precipitation of Fe-bearing aluminosilicates. The appearance of magnetite in scales indicates high corrosion rates.
Resumo:
Subseafloor environments preserved in Archean greenstone belts provide an analogue for investigating potential subsurface habitats on Mars. The c. 3.5-3.4 Ga pillow lava metabasalts of the mid-Archean Barberton greenstone belt, South Africa, have been argued to contain the earliest evidence for microbial subseafloor life. This includes candidate trace fossils in the form of titanite microtextures, and sulfur isotopic signatures of pyrite preserved in metabasaltic glass of the c. 3.472 Ga Hooggenoeg Formation. It has been contended that similar microtextures in altered martian basalts may represent potential extraterrestrial biosignatures of microbe-fluid-rock interaction. But despite numerous studies describing these putative early traces of life, a detailed metamorphic characterization of the microtextures and their host alteration conditions in the ancient pillow lava metabasites is lacking. Here, we present a new nondestructive technique with which to study the in situ metamorphic alteration conditions associated with potential biosignatures in mafic-ultramafic rocks of the Hooggenoeg Formation. Our approach combines quantitative microscale compositional mapping by electron microprobe with inverse thermodynamic modeling to derive low-temperature chlorite crystallization conditions. We found that the titanite microtextures formed under subgreenschist to greenschist facies conditions. Two chlorite temperature groups were identified in the maps surrounding the titanite microtextures and record peak metamorphic conditions at 315 ± 40°C (XFe3+(chlorite) = 25-34%) and lower-temperature chlorite veins/microdomains at T = 210 ± 40°C (lower XFe3+(chlorite) = 40-45%). These results provide the first metamorphic constraints in textural context on the Barberton titanite microtextures and thereby improve our understanding of the local preservation conditions of these potential biosignatures. We suggest that this approach may prove to be an important tool in future studies to assess the biogenicity of these earliest candidate traces of life on Earth. Furthermore, we propose that this mapping approach could also be used to investigate altered mafic-ultramafic extraterrestrial samples containing candidate biosignatures.
Resumo:
The spectrum characteristic of the EMC ranges from eclogites (containing omphacite and/or jadeite, garnet, phengite, glaucophane, zoisite, chloritoid, rutile) to phengite schists, calcschists, and marbles, as well as a variety of orthogneisses. Despite the intense polyphase deformation and HP-metamorphic recrystallization, it is possible in some locations to recognize pre-Alpine characteristics in some of the protoliths. For instance, two types of felsic orthogneiss can be distinguished in the Aosta Valley, one derived from Permian granitoids (with local preservation of intrusive contacts, magmatic inclusions, leucocratic veins and other magmatic structures; Stop 3), the other derived from pre-Variscan leuco-monzogranite, such as the building stone mined at the “Argentera” quarry near Settimo Vittone / Montestrutto (Stop 2; so-called “Verde Argento” contains jadeite, phengite, K-feldspar, quartz). Polycyclic and more rarely monocyclic metasediments contain evidence of a complex Alpine PTDt-evolution, locally including relics of their prograde history from blueschist, one or more stages at eclogite facies. Recent petrochronological studies have dated this HP-evolution of the Sesia Zone in some detail. In the area visited, clear evidence of HP-cycling has been identified in one km-size tectonic slice (Stop 1), but not in adjacent parts of the EMC, indicating “yo-yo tectonics”. Partial retrogression and attendant ductile to brittle deformation of the HP-rocks is evident in one of the outcrops (Stop 4). Apart from the four localities in the Sesia Zone, a final outcrop introduces HP-rocks of the adjacent Piemonte oceanic unit, specifically calc-schists and ophiolite members of the “Zermatt-Saas” zone. The hilltop outcrop (Stop 5) displays foliated antigorite schist with peridotite relics (clinopyroxene, spinel) containing lenses derived from doleritic dykes. These fine-grained metarodingites and the folded veins containing Mg-chlorite and titanoclinohumite within serpentinite once again indicate equilibration under low-temperature eclogite facies conditions. However, these units reached that HP stage more than 20 Ma after the youngest eclogite facies imprint recognized in the Sesia Zone. Despite nearly half a century of intense study in the Sesia Zone, the complex assembly of its HP-terranes and their relation to more external parts of the Western Alps remains incompletely understood. This field guide merely introduces a few of the classic outcrops and discusses some of the critical evidence they contain, but it could not incorporate details on each stage of the evolution recognized so far.
Resumo:
Serpentinites release at sub-arc depths volatiles and several fluid-mobile trace elements found in arc magmas. Constraining element uptake in these rocks and defining the trace element composition of fluids released upon serpentinite dehydration can improve our understanding of mass transfer across subduction zones and to volcanic arcs. The eclogite-facies garnet metaperidotite and chlorite harzburgite bodies embedded in paragneiss of the subduction melange from Cima di Gagnone derive from serpentinized peridotite protoliths and are unique examples of ultramafic rocks that experienced subduction metasomatism and devolatilization. In these rocks, metamorphic olivine and garnet trap polyphase inclusions representing the fluid released during high-pressure breakdown of antigorite and chlorite. Combining major element mapping and laser-ablation ICP-MS bulk inclusion analysis, we characterize the mineral content of polyphase inclusions and quantify the fluid composition. Silicates, Cl-bearing phases, sulphides, carbonates, and oxides document post-entrapment mineral growth in the inclusions starting immediately after fluid entrapment. Compositional data reveal the presence of two different fluid types. The first (type A) records a fluid prominently enriched in fluid-mobile elements, with Cl, Cs, Pb, As, Sb concentrations up to 10(3) PM (primitive mantle), similar to 10(2) PM Tit Ba, while Rb, B, Sr, Li, U concentrations are of the order of 10(1) PM, and alkalis are similar to 2 PM. The second fluid (type B) has considerably lower fluid-mobile element enrichments, but its enrichment patterns are comparable to type A fluid. Our data reveal multistage fluid uptake in these peridotite bodies, including selective element enrichment during seafloor alteration, followed by fluid-rock interaction along with subduction metamorphism in the plate interface melange. Here, infiltration of sediment-equilibrated fluid produced significant enrichment of the serpentinites in As, Sb, B, Pb, an enriched trace element pattern that was then transferred to the fluid released at greater depth upon serpentine dehydration (type A fluid). The type B fluid hosted by garnet may record the composition of the chlorite breakdown fluid released at even greater depth. The Gagnone study-case demonstrates that serpentinized peridotites acquire water and fluid-mobile elements during ocean floor hydration and through exchange with sediment-equilibrated fluids in the early subduction stages. Subsequent antigorite devolatilization at subarc depths delivers aqueous fluids to the mantle wedge that can be prominently enriched in sediment-derived components, potentially triggering arc magmatism without the need of concomitant dehydration/melting of metasediments or altered oceanic crust.
Resumo:
The southwestern Tianshan (China) metamorphic belt records high-pressure (HP) to ultrahigh-pressure (UHP) conditions corresponding to a cold oceanic subduction-zone setting. Serpentinites enclosing retrogressed eclogite and rodingite occur as lenses within metapelites in the UHP unit, which also hosts coesite-bearing eclogites. Based on the petrology and petrography of these serpentinites, five events are recognized: (1) formation of a wehrlite–harzburgite–dunite association in the mantle; (2) retrograde metamorphism and partial hydration during exhumation of the mantle rocks close to the seafloor; (3) oceanic metamorphism leading to the first serpentinization and rodingitization; (4) UHP metamorphism during subduction; (5) retrograde metamorphism during exhumation together with a second serpentinization. The peak metamorphic mineral assemblage of the serpentinized wehrlite comprises Ti-chondrodite + olivine + antigorite + chlorite + magnetite + brucite. A computed pseudosection for this serpentinized wehrlite shows that the Al content in antigorite is mostly sensititive to temperature but can also be used to constrain pressure. The average XAl = 0·204 ± 0·026 of antigorite (XAl = Al (a.p.f.u.)/8, where Al is in atoms per formula unit for a structural formula M48T34O85(OH)62, and M and T are octahedral and tetrahedral sites, respectively) included in Ti-chondrodite and average XAl = 0·203 ± 0·019 of antigorite in the matrix result in a well-constrained peak metamorphic temperature of 510–530°C. Peak pressures are less precisely constrained at 37 ± 7 kbar. The Tianshan serpentinites thus record UHP metamorphic conditions and represent the deepest subducted serpentinites discovered so far. The retrograde evolution occurs within the stability field of brucite + antigorite + olivine + chlorite and formation of Ti-clinohumite at the expense of Ti-chondrodite has been observed, suggesting isothermal decompression. The resulting P–T path is in excellent agreement with the metamorphic evolution of country rocks, indicating that the UHP unit in Tianshan was subducted and exhumed as a coherent block. To refine the metamorphic path of the ultramafic rocks, we have investigated the stability fields of Ti-chondrodite and Ti-clinohumite using piston-cylinder experiments. A total of 11 experiments were conducted at 25–55 kbar and 600–750°C in a F-free natural system. Combined with previous experiments and information from natural rocks we constructed a petrogenetic grid for the stability of Ti-chondrodite and Ti-clinohumite in F-free peridotite compositions. The formation of Ti-chondrodite in serpentinites requires a minimum pressure of about 26 kbar, whereas in Ti-rich systems it can form at considerably lower pressures. A key finding is that at UHP conditions, F-free Ti-chondrodite or Ti-clinohumite breaks down in the presence of orthopyroxene between 700 and 750°C, at temperatures that are significantly lower than those of the terminal breakdown reactions of these humite minerals. These breakdown reactions are an additional source of fluid during prograde subduction of serpentinites.
Resumo:
Keywords High-pressure fluids · Whiteschists · U–Pb dating · Oxygen isotopes · Ion microprobe · Metasomatism Introduction The subduction of crustal material to mantle depths and its chemical modification during burial and exhumation contribute to element recycling in the mantle and the formation of new crust through arc magmatism. Crustal rocks that Abstract The Dora-Maira whiteschists derive from metasomatically altered granites that experienced ultrahighpressure metamorphism at ~750 °C and 40 kbar during the Alpine orogeny. In order to investigate the P–T–time– fluid evolution of the whiteschists, we obtained U–Pb ages from zircon and monazite and combined those with trace element composition and oxygen isotopes of the accessory minerals and coexisting garnet. Zircon cores are the only remnants of the granitic protolith and still preserve a Permian age, magmatic trace element compositions and δ18O of ~10 ‰. Thermodynamic modelling of Si-rich and Si-poor whiteschist compositions shows that there are two main fluid pulses during prograde subduction between 20 and 40 kbar. In Si-poor samples, the breakdown of chlorite to garnet + fluid occurs at ~22 kbar. A first zircon rim directly overgrowing the cores has inclusions of prograde phlogopite and HREE-enriched patterns indicating zircon growth at the onset of garnet formation. A second main fluid pulse is documented close to peak metamorphic conditions in both Si-rich and Si-poor whiteschist when talc + kyanite react to garnet + coesite + fluid. A second metamorphic overgrowth on zircon with HREE depletion was observed in the Si-poor whiteschists, whereas a single metamorphic overgrowth capturing phengite and talc inclusions was observed in the Si-rich whiteschists. Garnet rims, zircon rims and monazite are in chemical and isotopic equilibrium for oxygen, demonstrating that they all formed at peak metamorphism at 35 Ma as constrained by the age of monazite (34.7 ± 0.4 Ma) and zircon rims (35.1 ± 0.8 Ma). The prograde zircon rim in Si-poor whiteschists has an age that is within error indistinguishable from the age of peak metamorphic conditions, consistent with a minimum rate of subduction of 2 cm/year for the Dora-Maira unit. Oxygen isotope values for zircon rims, monazite and garnet are equal within error at 6.4 ± 0.4 ‰, which is in line with closed-system equilibrium fractionation during prograde to peak temperatures. The resulting equilibrium Δ18Ozircon-monazite at 700 ± 20 °C is 0.1 ± 0.7 ‰. The in situ oxygen isotope data argue against an externally derived input of fluids into the whiteschists. Instead, fluidassisted zircon and monazite recrystallisation can be linked to internal dehydration reactions during prograde subduction. We propose that the major metasomatic event affecting the granite protolith was related to hydrothermal seafloor alteration post-dating Jurassic rifting, well before the onset of Alpine subduction.