861 resultados para Characteristic of fiber


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A mathematical model has been proposed to determine the voltage/current characteristic of the surge diverter for a wide range of currents of short duration of 8/20 and 4/10ÿs waveshapes. Experimental data agree well with the proposed model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Etched Fiber Bragg Grating (EFBG) sensors are attractive from the point of the inherently high multiplexing ability of fiber based sensors. However, the strong dependence of the sensitivity of EFBG sensors on the fiber diameter requires robust methods for calibration when used for distributed sensing in a large array format. Using experimental data and numerical modelling, we show that knowledge of the wavelength shift during the etch process is necessary for high-fidelity calibration of EFBG arrays. However as this approach requires the monitoring of every element of the sensor array during etching, we also proposed and demonstrated a calibration scheme using data from bulk refractometry measurements conducted post-fabrication without needing any information about the etching process. Although this approach is not as precise as the first one, it may be more practical as there is no requirement to monitor each element of the sensor array. We were able to calibrate the response of the sensors to within 3% with the approach using information acquired during etching and to within 5% using the post-fabrication bulk refractometry approach in spite of the sensitivities of the array element differing by more than a factor of 4. These two approaches present a tradeoff between accuracy and practicality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While Fiber Bragg Grating (FBG) sensors have been extensively used for temperature and strain sensing, clad etched FBGs (EFBGs) have only recently been explored for refractive index sensing. Prior literature in EFBG based refractive index sensing predominantly deals with bulk refractometry only, where the Bragg wavelength shift of the sensor as a function of the bulk refractive index of the sample can be analytically modeled, unlike the situation for adsorption of molecular thin films on the sensor surface. We used a finite element model to calculate the Bragg wavelength change as a function of thickness and refractive index of the adsorbing molecular layer and compared the model with the real-time, in-situ measurement of electrostatic layer-by-layer (LbL) assembly of weak polyelectrolytes on the silica surface of EFBGs. We then used this model to calculate the layer thickness of LbL films and found them to be in agreement with literature. Further, we used this model to arrive at a realistic estimate of the limit of detection of EFBG sensors based on nominal measurement noise levels in current FBG interrogation systems and found that sufficiently thinned EFBGs can provide a competitive platform for real-time measurement of molecular interactions while simultaneously leveraging the high multiplexing capabilities of fiber optics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gray water treatment and reuse is an immediate option to counter the upcoming water shortages in various parts of world, especially urban areas. Anaerobic treatment of gray water in houses is an alternative low cost, low energy and low sludge generating option that can meet this challenge. Typical problems of fluctuating VFA, low pH and sludge washout at low loading rates with gray water feedstock was overcome in two chambered anaerobic biofilm reactors using natural fibers as the biofilm support. The long term performance of using natural fiber based biofilms at moderate and low organic loading rates (OLR) have been examined. Biofilms raised on natural fibers (coir, ridge-gourd) were similar to that of synthetic media (PVC, polyethylene) at lower OLR when operated in pulse fed mode without effluent recirculation and achieved 80-90% COD removal at HRT of 2 d showing a small variability during start-up. Confocal microscopy of the biofilms on natural fibers indicated thinner biofilms, dense cell architecture and low extra cellular polymeric substances (EPS) compared to synthetic supports and this is believed to be key factor in high performance at low OLR and low strength gray water. Natural fibers are thus shown to be an effective biofilm support that withstand fluctuating characteristic of domestic gray water. (C) 2013 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An investigation of fiber/matrix interfacial fracture energy is presented in this paper. Several existing theoretical expressions for the fracture energy of interfacial debonding are reviewed. For the single-fiber/matrix debonding and pull-out experimental model, a study is carried out on the effect of interfacial residual compressive stress and friction on interface cracking energy release rate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate the influence of the relative humidity (RH) on the wavelength of fiber Bragg grating sensors (FBGS), performing tests with five FBGS at different humidity and temperature conditions. These tests were performed in a climate chamber whose RH changes according to a scheduled profile from 30% to 90%, in steps of 10%. These profiles were repeated for a wide range of temperatures from to , in steps of . Two different types of instrumentation methods have been tested, spot welding and epoxy bonding, in two different materials, steel and carbon fiber reinforced polymer (CFRP). We discuss the results for each type of sensor and instrumentation method by analyzing the linearity of the Bragg wavelength with RH and temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The polarization characteristics of electro-optical (EO) switches using fiber Sagnac interferometer (FSI) structures are theoretically investigated. Analytical solutions of output fields are presented when the twists and birefringence in a Sagnac loop are considered. Numerical calculations show that the twists of fiber, the orientation of the inserted phase retarder, and the splitting ratio of the coupler will influence both the output intensity and the output polarization properties of the proposed switch. A polarization-independent EO switch based on a Sagnac interferometer and a PUT bar was experimentally implemented, which showed good coincidence with the analytical results. The experiment showed a switch with 22 dB extinction ratio and less than 31.1 ns switching time. (c) 2006 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Because of high efficiencies, compact structure, and excellent heat dissipation, high-power fiber lasers are extremely useful for applications such as cutting, welding, precision drilling, trimming, sensing, optical transmitter, material processing, micromachining, and so on. However, the wavefront of the double clad fiber laser doped with ytterbium is still unknown. In this paper, wavefront of a fiber laser is measured and the traditional Hartmann-shack wavefront sensing method is adopted. We measured a double clad fiber laser doped with ytterbium which produces pulse wave output at infrared wavelength. The wavefront shape and contour are reconstructed and the result shows that wavefront is slightly focused and not an ideal plane wavefront. Wavefront measurement of fiber laser will be useful to improving the lasers' performance and developing the coherent technique for its applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fields in subwavelength-diameter terahertz hollow optical fiber (STHOF) can be intensified by large discontinuity of the electric field at high index contrast interfaces. The influences of fiber geometry and refractive index of the dielectric region on the fiber characteristics, such as power distribution, enhancement factor, have been discussed in detail. By appropriate design, the intensity in the central region of STHOF may be enhanced by a factor of greater than 1.5 compared with subwavelength-diameter terahertz fiber without the central hole and the loss can be reduced. For its compact structure and simple fabrication process, the fiber may be very useful in many miniaturized high performance and novel terahertz photonic devices. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate passive Q-switching of short-length double-clad Tm3+-doped silica fiber lasers near 2 mu m pumped by a laser diode array (LDA) at 790 nm. Polycrystalline Cr2+:ZnSe microchips with thickness from 0.3 to 1 mm are adopted as the Q-switching elements. Pulse duration of 120 ns, pulse energy over 14 mu] and repetition rate of 53 kHz are obtained from a 5-cm long fiber laser. As high as 530 kHz repetition rate is achieved from a 50-cm long fiber laser at similar to 10-W pump power. The performance of the Q-switched fiber lasers as a function of fiber length is also analyzed. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate the influence of the relative humidity (RH) on the wavelength of fiber Bragg grating sensors (FBGS), performing tests with five FBGS at different humidity and temperature conditions. These tests were performed in a climate chamber whose RH changes according to a scheduled profile from 30% to 90%, in steps of 10%. These profiles were repeated for a wide range of temperatures from 10 degrees C to 70 degrees C, in steps of 10 degrees C. Two different types of instrumentation methods have been tested, spot welding and epoxy bonding, in two different materials, steel and carbon fiber reinforced polymer (CFRP). We discuss the results for each type of sensor and instrumentation method by analyzing the linearity of the Bragg wavelength with RH and temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transmission properties of data amplitude modulation (AM) and frequency modulation (FM) in radio-over-fiber (RoF) system are studied numerically. The influences of fiber dispersion and nonlinearity on different microwave modulation schemes, including double side band (DSB), single side band (SSB) and optical carrier suppression (OCS), are investigated and compared. The power penalties at the base station (BS) and the eye opening penalties of the recovered data at the end users are both calculated and analyzed. Numerical simulation results reveal that the power penalty of FM can be drastically decreased due to the larger modulation depth it can achieve than that of AM. The local spectrum broadening around subcarrier microwave frequency of AM due to fiber nonlinearity can also be eliminated with FM. It is demonstrated for the first time that the eye openings of the FM recovered data can be controlled by its modulation depths and the coding formats. Negative voltage encoding format was used to further decrease the RF frequency thus increase the fluctuation period considering their inverse relationship.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the ground target detection, classification and sensor fusion problems in distributed fiber seismic sensor network. Compared with conventional piezoelectric seismic sensor used in UGS, fiber optic sensor has advantages of high sensitivity and resistance to electromagnetic disturbance. We have developed a fiber seismic sensor network for target detection and classification. However, ground target recognition based on seismic sensor is a very challenging problem because of the non-stationary characteristic of seismic signal and complicated real life application environment. To solve these difficulties, we study robust feature extraction and classification algorithms adapted to fiber sensor network. An united multi-feature (UMF) method is used. An adaptive threshold detection algorithm is proposed to minimize the false alarm rate. Three kinds of targets comprise personnel, wheeled vehicle and tracked vehicle are concerned in the system. The classification simulation result shows that the SVM classifier outperforms the GMM and BPNN. The sensor fusion method based on D-S evidence theory is discussed to fully utilize information of fiber sensor array and improve overall performance of the system. A field experiment is organized to test the performance of fiber sensor network and gather real signal of targets for classification testing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A piece of multimode optical fiber with a low numerical aperture (NA) is used as an inexpensive microlens to collimate the output radiation of a laser diode bar in the high numerical aperture (NA) direction. The emissions of the laser diode bar are coupled into multimode fiber array. The radiation from individual ones of emitter regions is optically coupled into individual ones of fiber array. Total coupling efficiency and fiber output power are 75% and 15W, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have proposed a novel type of photonic crystal fiber (PCF) with low dispersion and high nonlinearity for four-wave mixing. This type of fiber is composed of a solid silica core and a cladding with a squeezed hexagonal lattice elliptical airhole along the fiber length. Its dispersion and nonlinearity coefficient are investigated simultaneously by using the full vectorial finite element method. Numerical results show that the proposed highly nonlinear low-dispersion fiber has a total dispersion as low as +/- 2.5 ps nm(-1) km(-1) over an ultrabroad wavelength range from 1.43 to 1.8 mu m, and the corresponding nonlinearity coefficient and birefringence are about 150 W-1 km(-1) and 2.5 x 10(-3) at 1.55 mu m, respectively. The proposed PCF with low ultraflattened dispersion, high nonlinearity, and high birefringence can have important application in four-wave mixing. (C) 2010 Optical Society of America