997 resultados para Central Pacific Basin


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Seven quartered sections of Pliocene to Mesozoic (Cenomanian) cores from the Nauru Basin contain primarily marine organic matter admixed with detectable amounts of terrigenous organic matter. The mixture is immature with respect to organic genesis. Chemical properties of this organic matter are compared with properties of other deep-ocean cores from DSDP sites in the central Pacific.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Neogene stratigraphy of the tropical and subtropical Pacific on radiolaria is studied in the book. A detailed comparison of coeval systems from tropics and subtropics is given. A possibility of use of a uniform zonal scale in these areas is proved. Magnitude of changes of complexes on borders of Neogene zones is studied in detail. Six stages in development of radiolarians are identified in the tropics in Neogene. Stratigraphic levels, where the greatest changes of fauna occurred, are natural boundaries of these stages. 72 species of radiolarians (two of which are new) are described in the book.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cretaceous benthic foraminifers from Site 585 in the East Mariana Basin, western Pacific Ocean, provide an environmental and tectonic history of the Basin and the surrounding seamounts. Age diagnostic species (from a fauna of 155 benthic species identified) range from late Aptian to Maestrichtian in age. Displaced species in sediments derived from the tops and flanks of nearby seamounts were deposited sporadically on the Basin floor well below the carbonate compensation depth (CCD) at abyssal depths of 5000 to 6000 m. These depths, characterized by an indigenous assemblage of benthic foraminifers, recrystallized radiolarians, fish debris, and sponge spicules, existed in the Mariana Basin from late Aptian to the present. Early Albian and older edifice-building volcanism had reached the photic zone with associated shallow-water bank or reef environments. By middle Albian, the dominant source areas subsided to outer-neritic to upper-bathyal depths. Major volcanic activity ceased and fine-grained sediments were deposited by distal turbidites, although intermittent volcanism and the influx of rare neritic material continued until the late Albian. By the Cenomanian to Turonian, upper- to middle-bathyal depths were reached by the dominant source areas, and the sediments recovered from this interval include organic carbon-rich layers. Rare benthic foraminifers from the Coniacian-Santonian interval indicate a continuation of dominantly middle-bathyal source areas. A change in sedimentation during the Campanian-Maestrichtian from older zeolitic claystone to abundant chert in the Campanian, and nannofossil chalk and claystone in the Maestrichtian resulted from migration of the site beneath the equatorial productive zone due to northwestward plate motion. The appearance of rare middle-neritic and upper-bathyal species in the Maestrichtian interval associated with volcanogenic debris gives evidence of the remobilization and downslope transport of pelagic deposits due to thermally induced uplift. Episodic redeposition of shallow-water material during the Aptian-Albian was produced by edifice-building volcanism perhaps combined with eustatic lowering of sea level. The Cenomanian-Turonian pulse coincided with a low global sea-level stand as does the transported material during the Coniacian-Santonian. The Maestrichtian pulse was caused by renewed midplate volcanism that extended over a large area of the central Pacific.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We detected authigenic clinoptilolites in two core samples of tuffaceous, siliceous mudstone in the lower Miocene section of Hole 439. They occur as prismatic and tabular crystals as long as 0.03 mm in various voids of dissolved glass shards, radiolarian shells, calcareous foraminifers, and calcareous algae. They are high in alkalies, especially Na, and in silica varieties. There is a slight difference in composition among them. The Si : (Al+ Fe3+) ratio is highest (4.65) in radiolarian voids, intermediate (4.34) in dissolved glass voids, and lowest (4.26) in voids of calcareous organisms. This difference corresponds to the association of authigenic silica minerals revealed by the scanning electron microscope: There are abundant opal-CT lepispheres in radiolarian voids, low cristobalite and some lepispheres in dissolved glass voids, and a lack of silica minerals in the voids of calcareous organisms. Although it contains some silica from biogenic opal and alkalies from trapped sea water, clinoptilolite derives principally from dissolved glass. Although they are scattered in core samples of Quaternary through lower Miocene diatomaceous and siliceous deposits, acidic glass fragments react with interstitial water to form clinoptilolite only at a sub-bottom depth of 935 meters at approximately 25°C. Analcimes occur in sand-sized clasts of altered acidic vitric tuff in the uppermost Oligocene sandstones. The analcimic tuff clasts were probably reworked from the Upper Cretaceous terrain adjacent to Site 439. Low cristobalite and opal-CT are found in tuffaceous, siliceous mudstone of the middle and lower Miocene sections at Sites 438 and 439. Low cristobalite derives from acidic volcanic glass and opal-CT from biogenic silica. Both siliceous organic remains and acidic glass fragments occur in sediments from the Quaternary through lower Miocene sections. However, the shallowest occurrence is at 700 meters subbottom in Hole 438A, where temperature is estimated to be 21°C. The d(101) spacing of opal-CT varies from 4.09 to 4.11 Å and that of low cristobalite from 4.04 to 4.06 Å. Some opal-CT lepispheres are precipitated onto clinoptilolites in the voids of radiolarian shells at a sub-bottom depth of 950 meters in Hole 439. Sandstone interlaminated with Upper Cretaceous shale is chlorite- calcite cemented and feldspathic. Sandstones in the uppermost Oligocene section are lithic graywacke and consist of large amounts of lithic clasts grouped into older sedimentary and weakly metamorphosed rocks, younger sedimentary rocks, and acidic volcanic rocks. The acidic volcanic clasts probably originated from the volcanic high, which supplied the basal conglomerate with dacite gravels. The older sedimentary and weakly metamorphosed rocks and green rock correspond to the lithologies of the lower Mesozoic to upper Paleozoic Sorachi Group, including the chert, limestone, and slate in south-central Hokkaido. However, the angular shape and coarseness of the clasts and the abundance of carbonate rock fragments indicate a nearby provenance, which is probably the southern offshore extension of the Sorachi Group. The younger sedimentary rocks, including mudstone, carbonaceous shale, and analcime-bearing tuff, correspond to the lithologies of the Upper Cretaceous strata in south-central Hokkaido. Their clasts were reworked from the southern offshore extension of the strata. Because of the discontinuity of the zeolite zoning due to burial diagenesis, an overburden several kilometers thick must have been denuded before the deposition of sediments in the early Oligocene.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report new 187Os/186Os data and Re and Os concentrations in metalliferous sediments from the Pacific to construct a composite Os isotope seawater evolution curve over the past 80 m.y. Analyses of four samples of upper Cretaceous age yield 187Os/186Os values of between 3 and 6.5 and 187Re/186Os values below 55. Mass balance calculations indicate that the pronounced minimum of about 2 in the Os isotope ratio of seawater at the K-T boundary probably reflects the enormous input of cosmogenic material into the oceans by the K-T impactor(s). Following a rapid recovery to 187Os/186Os of 3.5 at 63 Ma, data for the early and middle part of the Cenozoic show an increase in 187Os/186Os to about 6 at 15 Ma. Variations in the isotopic composition of leachable Os from slowly accumulating metalliferous sediments show large fluctuations over short time spans. In contrast, analyses of rapidly accumulating metalliferous carbonates do not exhibit the large oscillations observed in the pelagic clay leach data. These results together with sediment leaching experiments indicate that dissolution of non-hydrogenous Os can occur during the hydrogen peroxide leach and demonstrate that Os data from pelagic clay leachates do not always reflect the Os isotopic composition of seawater. New data for the late Cenozoic further substantiate the rapid increase in the 187Os/186Os of seawater during the past 15 Ma. We interpret the correlation between the marine Sr and Os isotope records during this time period as evidence that weathering within the drainage basin of the Ganges-Brahmaputra river system is responsible for driving seawater Sr and Os toward more radiogenic isotopic compositions. The positive correlation between 87Sr/86Sr and U concentration, the covariation of U and Re concentrations, and the high dissolved Re, U and Sr concentrations found in the Ganges-Brahmaputra river waters supports this interpretation. Accelerating uplift of many orogens worldwide over the past 15 Ma, especially during the last 5 Ma, could have contributed to the rapid increase in 187Os/186Os from 6 to 8.5 over the past 15 Ma. Prior to 15 Ma the marine Sr and Os record are not tightly coupled. The heterogeneous distribution of different lithologies within eroding terrains may play an important role in decoupling the supplies of radiogenic Os and Sr to the oceans and account for the periods of decoupling of the marine Sr and Os isotope records.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The post-middle Miocene evolution of sedimentary patterns in the eastern equatorial Pacific Ocean has been deduced from a compilation and synthesis of CaCO3, opal, and nannofossil assemblage data from 11 sites drilled during Leg 138. Improvements in stratigraphic correlation and time scale development enabled the construction of lithostratigraphic and chronostratigraphic frameworks of exceptional quality. These frameworks, and the high sedimentation rates (often exceeding 4 cm/k.y.) provided a detailed and synoptic paleoceanographic view of a large and highly productive region. The three highlights that emerge are: (1) a middle late Miocene "carbonate crash" (Lyle et al., this volume); (2) a late Miocene-early Pliocene "biogenic bloom"; and (3) an early Pliocene "opal shift". During the carbonate crash, an interval of dissolution extending from -11.2 to 7.5 Ma, CaCO3 accumulation rates declined to near zero over much of the eastern equatorial Pacific, whereas opal accumulation rates remained substantially unchanged. The crash nadir, near 9.5 Ma, was marked by a brief shoaling of the regional carbonate compensation depth by more than 1400 m. The carbonate crash has been correlated over the entire tropical Pacific Ocean, and has been attributed to tectonically-induced changes in abyssal flow through the Panamanian seaway. The biogenic bloom extended from 6.7 to 4.5 Ma, and was characterized by an overall increase in biogenic accumulation and by a steepening of the latitudinal accumulation gradient toward the equator. The bloom has been observed over a large portion of the global ocean and has been linked to increased productivity. The final highlight, is a distinct and permanent shift in the locus of maximum opal mass accumulation rate at 4.4 Ma. This shift was temporally, and perhaps causally, linked to the final closure of the Panamanian seaway. Before 4.4 Ma, opal accumulation was greatest in the eastern equatorial Pacific Basin (near 0°N, 107°W). Since then, the highest opal fluxes in the equatorial Pacific have occurred in the Galapagos region (near 3°S, 92°W).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Changes in concentration levels and speciation of heavy metals during sedimentation on example of a typical semi-closed bay, where bottom sediments have formed due to river run-off, are under consideration. It is shown that due to desorption of mobile manganese, zinc and copper entered the bay with river suspended matter, their total contents in bottom sediments decrease and percentages of lithogenic forms increase. Contents and speciation of iron in bottom sediments are determined by its participation in coagulation of river colloids in the mixing zone and by mechanical differentiation of sedimentary material.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Sr contents in phosphorites on shelves of the Southwest Africa, and of Chile and Peru increase with degree of their lithification, from 0.05 to 0.28% and from 0.13 to 0.16% respectively. Phosphorites from Pacific submarine seamounts have the average Sr content 0.11%, and bone phosphate from Pacific floor 0.13%. Shelf phosphorites are characterized by high correlation coefficients between Sr and P2O5 (R = +0.82) and constant Sr/P2O5 ratio (0.0084). In phosphorites from submarine sea-mounts and in bones from the ocean floor Sr/P2O5 ratio is only a little higher than a half of that in shelf phosphorites. This indicates specific and different genesis of phosphorites from submarine mountains. Ba content in recent phosphorites from the shelf of the Southwest Africa changes with increasing degree of lithification. At first their Ba contents rise from 0.031 to 0.188%, then they diminish to 0.016%, and thereafter again increase to 0.070%. This is due to successive predominance of one of the following processes going in different directions: co-precipitation with phosphate gels or formation of true separate Ba phase, loss of phosphate in crystallization and "self-purification" of concentrations, and surface adsorption. In Peru-Chile shelf phosphorites the average Ba content is 0.017%, in phosphorites from Pacific seamounts 0.192%, and in fossilized bones 0.010%.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Recent phosphorites from the Namibian shelf are characterized by low REE contents, depletion in REE compared to host sediments and sharp deficiency of lanthanum and europium. In Late Quaternary and Pre-Quaternary phosphorites from ocean shelves REE contents and patterns in general are the same as in host sediments. Phosphorites from seamounts are enriched in REE compared to shelf phosphorites and their patterns are close to one of seawater. Behavior of REE in shelf phosphorites is determined by the fact that in early stages of phosphorite formation REE are associated not primarily with phosphate, but with organic matter and terrigenous impurities. Only in the later stages of diagenesis phosphate begins to play a leading role in concentration of REE. In metasomatic phosphorites on seamounts concentration of REE depends on age and depth of these rocks, i.e. it is determined by duration and conditions of contact with sea water.