926 resultados para Cement Stabilisation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ammonia (NH 3) plasma pretreatment is used to form and temporarily reduce the mobility of Ni, Co, or Fe nanoparticles on boron-doped mono- and poly-crystalline silicon. X-ray photoemission spectroscopy proves that NH 3 plasma nitrides the Si supports during nanoparticle formation which prevents excessive nanoparticle sintering/diffusion into the bulk of Si during carbon nanotube growth by chemical vapour deposition. The nitridation of Si thus leads to nanotube vertical alignment and the growth of nanotube forests by root growth mechanism. © 2012 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper presents hydraulic conductivity, unconfined compression strength (UCS) and triaxial test results of an 11 year old slag-cement-bentonite (CB) cut-off wall material and identifies factors affecting their long-term performance. The laboratory tests were performed on three types of CB samples ranging from contaminated block field samples to uncontaminated laboratory cast samples. The results showed that hydraulic conductivity reduces till 3 years and UCS increases till 90 days, but there after it remains constant till 11 years of age. The mean hydraulic conductivity and UCS values of block field samples are inferior and have large variability than laboratory cured samples. Such variations are mainly because of heterogeneity caused by aggressive environment and impurities within the specimen. Consolidated undrained triaxial test found that under an effective confining pressure of less than 200 kPa, tension failure occurred since the minor principal stress dropped to zero value at failure. The research outcome is useful for understanding future liability of CB wall and improving their design. © 2009 IOS Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plugging is well known to be a major cause of instability in industrial cement mills. A simple nonlinear model able to simulate the plugging phenomenon is presented. It is shown how a nonlinear robust controller can be designed in order to fully prevent the mill from plugging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cement-bentonite (CB) cutoff walls have long been used to control ground water flow and contaminant migration at polluted sites. Hydraulic conductivity and unconfined compressive strength are two short-term properties often used by industry and owners in CB specification and are important parameters discussed in this paper. For polluted sites, long-term compatibility is also an important issue. These properties are coupled to a number of external factors including the mix design, construction sequence, presence/absence of contaminants at the site. Additional short-term properties for engineering assessment include the stressstrain characteristics in both drained and undrained shear in both with and without confinement as well as one-dimensional consolidation properties. Long term CB properties are affected by aging, reaction chemistry, drying, in situ stress state, and interaction with the polluted environment. © 2013 Taylor & Francis Group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents ongoing work on data collection and collation from a large number of laboratory cement-stabilization projects worldwide. The aim is to employ Artificial Neural Networks (ANN) to establish relationships between variables, which define the properties of cement-stabilized soils, and the two parameters determined by the Unconfined Compression Test, the Unconfined Compressive Strength (UCS), and stiffness, using E50 calculated from UCS results. Bayesian predictive neural network models are developed to predict the UCS values of cement-stabilized inorganic clays/silts, as well as sands as a function of selected soil mix variables, such as grain size distribution, water content, cement content and curing time. A model which can predict the stiffness values of cement-stabilized clays/silts is also developed and compared to the UCS model. The UCS model results emulate known trends better and provide more accurate estimates than the results from the E50 stiffness model. © 2013 American Society of Civil Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Factors that affect the engineering properties of cement stabilized soils such as strength are discussed in this paper using data on these factors. The selected factors studied in this paper are initial soil water content, grain size distribution, organic matter content, binder dosage, age and curing temperature, which has been collated from a number of international deep mixing projects. Some resulting correlations from this data are discussed and presented. The concept of Artificial Neural Networks and its applicability in developing predictive models for deep mixed soils is presented and discussed using a subset of the collated data. The results from the neural network model were found to emulate the known trends and reasonable estimates of strength as a function of the selected variables were obtained. © 2012 American Society of Civil Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigates the effect of thermal cycles on the fracture properties of the cement-based bi-materials. Sixty eight cubes were exposed to a varied number of 24-hour thermal cycles ranging from 0 to 90 and subsequently were tested in a wedge splitting configuration. The mechanical and fracture properties of normal strength and high strength concretes are substantially improved after 30 thermal cycles, but less so after 90 thermal cycles both in isolation and when bonded to an ultra high-performance fibre-reinforced cement-based composite. © 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uniquely, China employs MgO already contained in cement clinker or as an expansive additive to compensate for the thermal shrinkage of mass concrete, particularly dam concrete, with almost 40 years' experience in both research activities and industrial applications. Compensating shrinkage with expansion produced by MgO has been proved to effectively prevent thermal cracking of mass concrete, and reduce the cost of temperature control measures and speed up the construction process. Moreover, the expansion properties of MgO could be designed flexibly, through adjusting its microstructure by changing the calcination conditions (calcining temperature and residence time). The collective knowledge and experience of MgO expansive cement and concrete is worthy of sharing with relevant engineers and researchers globally but dissemination has been hindered as most of the relevant literature is published in Chinese. This paper reviews the history, state-of-the-art progress and future research needs in the field of MgO expansive cement and concrete. © 2013 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of reactive magnesia (MgO) as the binder in porous blocks demonstrated significant advantages due to its low production temperatures and ability to carbonate, leading to significant strengths. This paper investigates the enhancement of the carbonation process through different curing conditions: water to cement ratio (0.6-0.9), CO2 concentration (5-20%), curing duration (1-7 days), relative humidity (55-98%), and wet/dry cycling frequency (every 0-3 days), improving the carbonation potential through increased amounts of CO2 absorbed and enhanced mechanical performance. UCS results were supported with SEM, XRD, and HCl acid digestion analyses. The results show that CO2 concentrations as low as 5% can produce the required strengths after only 1 day. Drier mixes perform better in shorter curing durations, whereas larger w/c ratios are needed for continuous carbonation. Mixes subjected to 78% RH outperformed all the others, also highlighting the benefits of incorporating wet/dry cycling to induce carbonation. © 2014 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Development of comparisons and correlations between the unconfined compressive strength (UCS) and the undrained triaxial compressive strength, qu, is essential for generalising performance and optimising the design of cement-stabilised soils. This paper introduces current work in collecting and collating data from a number of research projects involving both laboratory strength tests performed on identical cement-stabilised soil samples. The research project on cement-stabilised Singapore marine clays at the National University of Singapore has been used as an example to explain the work on comparing and correlating results from both tests by normalising data and constructing contour plots. The effect of variables on strength comparison and correlations was evaluated. The variation in strength correlations was found to be dependent on a number of factors including: soil properties, cement content, curing time and stress, total water/cement ratio, confining stress and strain rate. The results showed that at ~ 100 kPa confining stress, UCS and qu, had similar magnitudes. Correlations between strengths and other design variables are discussed and presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: To investigate (a) variability in powder/liquid proportioning (b) effect of the extremes of any such variability on diametral tensile strength (DTS), in a commercial zinc phosphate cement. Statistical analyses (a = 0.05) were by Student's t-test in the case of powder/liquid ratio and one-way ANOVA and Tukey HSD for for pair-wise comparisons of mean DTS. The Null hypotheses were that (a) the powder-liquid mixing ratios observed would not differ from the manufacturer's recommended ratio (b) DTS of the set cement samples using the extreme powder/liquid ratios observed would not differ from those made using the manufacturer's recommended ratio. Methodology: Thirty-four undergraduate dental students dispensed the components according to the manufacturer's instructions. The maximum and minimum powder/liquid ratios (m/m), together with the manufacturer's recommended ratio (m/m), were used to prepare cylindrical samples (n = 3 x 34) for DTS testing. Results: Powder/liquid ratios ranged from 2.386 to 1.018.The mean ratio (1.644 (341) m/m) was not significantly different from the manufacturer's recommended value of 1.718 (p=0.189). DTS values for the maximum and minimum ratios (m/m), respectively, were both significantly different from each other (p<0.001) and from the mean value obtained from the manufacturer's recommended ratio (m/m) (p<0.001). Conclusions: Variability exists in powder/liquid ratio (m/m) for hand dispensed zinc phosphate cement. This variability can affect the DTS of the set material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enzymes and biochemical mechanisms essential to survival are under extreme selective pressure and are highly conserved through evolutionary time. We applied this evolutionary concept to barnacle cement polymerization, a process critical to barnacle fitness that involves aggregation and cross-linking of proteins. The biochemical mechanisms of cement polymerization remain largely unknown. We hypothesized that this process is biochemically similar to blood clotting, a critical physiological response that is also based on aggregation and cross-linking of proteins. Like key elements of vertebrate and invertebrate blood clotting, barnacle cement polymerization was shown to involve proteolytic activation of enzymes and structural precursors, transglutaminase cross-linking and assembly of fibrous proteins. Proteolytic activation of structural proteins maximizes the potential for bonding interactions with other proteins and with the surface. Transglutaminase cross-linking reinforces cement integrity. Remarkably, epitopes and sequences homologous to bovine trypsin and human transglutaminase were identified in barnacle cement with tandem mass spectrometry and/or western blotting. Akin to blood clotting, the peptides generated during proteolytic activation functioned as signal molecules, linking a molecular level event (protein aggregation) to a behavioral response (barnacle larval settlement). Our results draw attention to a highly conserved protein polymerization mechanism and shed light on a long-standing biochemical puzzle. We suggest that barnacle cement polymerization is a specialized form of wound healing. The polymerization mechanism common between barnacle cement and blood may be a theme for many marine animal glues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The efficient remediation of heavy metal-bearing sediment has been one of top priorities of ecosystem protection. Cement-based solidification/stabilization (s/s) is an option for reducing the mobility of heavy metals in the sediment and the subsequent hazard for human beings and animals. This work uses sodium carbonate as an internal carbon source of accelerated carbonation and gaseous CO2 as an external carbon source to overcome deleterious effects of heavy metals on strength development and improve the effectiveness of s/s of heavy metal-bearing sediment. In addition to the compressive strength and porosity measurements, leaching tests followed the Chinese solid waste extraction procedure for leaching toxicity - sulfuric acid and nitric acid method (HJ/T299-2007), German leaching procedure (DIN38414-S4) and US toxicity characteristic leaching procedures (TCLP) have been conducted. The experimental results indicated that the solidified sediment by accelerated carbonation was capable of reaching all performance criteria for the disposal at a Portland cement dosage of 10 wt.% and a solid/water ratio of 1: 1. The concentrations of mercury and other heavy metals in the leachates were below 0.10 mg/L and 5 mg/L, respectively, complying with Chinese regulatory level (GB5085-2007). Compared to the hydration, accelerated carbonation improved the compressive strength of the solidified sediment by more than 100% and reduced leaching concentrations of heavy metals significantly. It is considered that accelerated carbonation technology with a combination of Na2CO3 and CO2 may practically apply to cement-based s/s of heavy metal-bearing sediment. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In response to a burgeoning interest in the prospective clinical applications of hydraulic calcium (alumino)silicate cements, the in vitro bioactivity and dissolution characteristics of a white Portland cement have been investigated. The formation of an apatite layer within 6 h of contact with simulated body fluid was attributed to the rapid dissolution of calcium hydroxide from the cement matrix and to the abundance of pre-existing Si-OH nucleation sites presented by the calcium silicate hydrate phase. A simple kinetic model has been used to describe the rate of apatite formation and an apparent pseudo-second-order rate constant for the removal of HPO42- ions frorn solultion has been calculated (k(2) = 5.8 x 10(-4) g mg(-1)). Aspects of the chemistry of hydraulic cements are also discussed with respect to their potential use in the remedial treatment of living tissue. (C) 2008 Wiley Periodicals, Inc. J Biomed Mater Res 90A: 166-174, 2009