988 resultados para Caucasus, South--Maps
Resumo:
Title varies slightly.
Resumo:
1 map on 2 sheets.
Resumo:
Advertising matter: 48 p. at end.
Resumo:
"The starting of a national government in Austrailia, by R. R. Garran": vol. I, p. [373]-389.
Resumo:
In this study, I divided samples from individuals within Afghanistan based upon geography (i.e., north versus south). I determined allelic frequencies and other statistical parameters for 15 STR loci (i.e., D8S1179, D21S11, D7S820, CSF1PO, D3S1358, TH01, Dl3S317, D16S539, D2S1338, D19S433, vWA, TPOX, D18S51, D5S818, and FGA). I conducted pairwise comparisons with 19 neighboring Eurasian populations to assign Gstatistics and p-values. Categorizing the populations into five groups (i.e., Central Asia, East Asia, South Asia, the Middle East, and the Caucasus/Anatolia), I derived values for intra-population, inter-population, and total variance. Admixture analyses determined the highest allelic contributions to be from the Caucasus/ Anatolia, while negligible contributions were made by Central Asia and East Asia. A Correspondence Analysis revealed clustering of both northern and southern Afghanistan with Georgia, Turkey, northern Iran, and southern Iran of the Caucasus/ Anatolia and the Middle East. A Neighbor-Joining phylogenetic tree was constructed to generate bootstrap values over 1, 000 reiterations.
Resumo:
This dataset provides an inventory of thermo-erosional landforms and streams in three lowland areas underlain by ice-rich permafrost of the Yedoma-type Ice Complex at the Siberian Laptev Sea coast. It consists of two shapefiles per study region: one shapefile for the digitized thermo-erosional landforms and streams, one for the study area extent. Thermo-erosional landforms were manually digitized from topographic maps and satellite data as line features and subsequently analyzed in a Geographic Information System (GIS) using ArcGIS 10.0. The mapping included in particular thermo-erosional gullies and valleys as well as streams and rivers, since development of all of these features potentially involved thermo-erosional processes. For the Cape Mamontov Klyk site, data from Grosse et al. [2006], which had been digitized from 1:100000 topographic map sheets, were clipped to the Ice Complex extent of Cape Mamontov Klyk, which excludes the hill range in the southwest with outcropping bedrock and rocky slope debris, coastal barrens, and a large sandy floodplain area in the southeast. The mapped features (streams, intermittent streams) were then visually compared with panchromatic Landsat-7 ETM+ satellite data (4 August 2000, 15 m spatial resolution) and panchromatic Hexagon data (14 July 1975, 10 m spatial resolution). Smaller valleys and gullies not captured in the maps were subsequently digitized from the satellite data. The criterion for the mapping of linear features as thermo-erosional valleys and gullies was their clear incision into the surface with visible slopes. Thermo-erosional features of the Lena Delta site were mapped on the basis of a Landsat-7 ETM+ image mosaic (2000 and 2001, 30 m ground resolution) [Schneider et al., 2009] and a Hexagon satellite image mosaic (1975, 10 m ground resolution) [G. Grosse, unpublished data] of the Lena River Delta within the extent of the Lena Delta Ice Complex [Morgenstern et al., 2011]. For the Buor Khaya Peninsula, data from Arcos [2012], which had been digitized based on RapidEye satellite data (8 August 2010, 6.5 m ground resolution), were completed for smaller thermo-erosional features using the same RapidEye scene as a mapping basis. The spatial resolution, acquisition date, time of the day, and viewing geometry of the satellite data used may have influenced the identification of thermo-erosional landforms in the images. For Cape Mamontov Klyk and the Lena Delta, thermo-erosional features were digitized using both Hexagon and Landsat data; Hexagon provided higher resolution and Landsat provided the modern extent of features. Allowance of up to decameters was made for the lateral expansion of features between Hexagon and Landsat acquisitions (between 1975 and 2000).
Resumo:
Coral reef maps at various spatial scales and extents are needed for mapping, monitoring, modelling, and management of these environments. High spatial resolution satellite imagery, pixel <10 m, integrated with field survey data and processed with various mapping approaches, can provide these maps. These approaches have been accurately applied to single reefs (10-100 km**2), covering one high spatial resolution scene from which a single thematic layer (e.g. benthic community) is mapped. This article demonstrates how a hierarchical mapping approach can be applied to coral reefs from individual reef to reef-system scales (10-1000 km**2) using object-based image classification of high spatial resolution images guided by ecological and geomorphological principles. The approach is demonstrated for three individual reefs (10-35 km**2) in Australia, Fiji, and Palau; and for three complex reef systems (300-600 km**2) one in the Solomon Islands and two in Fiji. Archived high spatial resolution images were pre-processed and mosaics were created for the reef systems. Georeferenced benthic photo transect surveys were used to acquire cover information. Field and image data were integrated using an object-based image analysis approach that resulted in a hierarchically structured classification. Objects were assigned class labels based on the dominant benthic cover type, or location-relevant ecological and geomorphological principles, or a combination thereof. This generated a hierarchical sequence of reef maps with an increasing complexity in benthic thematic information that included: 'reef', 'reef type', 'geomorphic zone', and 'benthic community'. The overall accuracy of the 'geomorphic zone' classification for each of the six study sites was 76-82% using 6-10 mapping categories. For 'benthic community' classification, the overall accuracy was 52-75% with individual reefs having 14-17 categories and reef systems 20-30 categories. We show that an object-based classification of high spatial resolution imagery, guided by field data and ecological and geomorphological principles, can produce consistent, accurate benthic maps at four hierarchical spatial scales for coral reefs of various sizes and complexities.
Resumo:
Surveying habitats critical to the survival of grey nurse sharks in South-East Queensland has mapped critical habitats, gathered species inventories and developed protocols for ecological monitoring of critical habitats in southern Queensland. This information has assisted stakeholders with habitat definition and effective management. In 2002 members of UniDive applied successfully for World Wide Fund for Nature, Threatened Species Network funds to map the critical Grey Nurse Shark Habitats in south east Queensland. UniDive members used the funding to survey, from the boats of local dive operators, Wolf Rock at Double Island Point, Gotham, Cherub's Cave, Henderson's Rock and China Wall at North Moreton and Flat Rock at Point Look Out during 2002 and 2003. These sites are situated along the south east Queensland coast and are known to be key Grey Nurse Shark aggregation sites. During the project UniDive members were trained in mapping and survey techniques that include identification of fish, invertebrates and substrate types. Training was conducted by experts from the University of Queensland (Centre of Marine Studies, Biophysical Remote Sensing) and the Queensland Parks and Wildlife Service who are also UniDive members. The monitoring methods (see methods) are based upon results of the UniDive Coastcare project from 2002, the international established Reef Check program and research conducted by Biophysical Remote Sensing and the Centre of Marine Studies. Habitats were mapped using a combination of towed GPS photo transects, aerial photography, bathymetry surveys and expert knowledge. This data provides georeferenced information regarding the major features of each of Sites mapped including Wolf Rock
Resumo:
A set of 114 samples from the sediment surface of the Atlantic, eastern Pacific and western Indian sectors of the Southern Ocean has been analyzed for 230Th and biogenic silica. Maps of opal content, Th-normalized mass flux, and Th-normalized biogenic opal flux into the sediment have been derived. Significant differences in sedimentation patterns between the regions can be detected. The mean bulk vertical fluxes integrated into the sediment in the open Southern Ocean are found in a narrow range from 2.9 g/m**2 yr (Eastern Weddell Gyre) to 15.8 g/m**2 yr (Indian sector), setting upper and lower limits to the vertically received fraction of open ocean sediments. The silica flux to sediments of the Atlantic sector of the Southern Ocean is found to be 4.2 ± 1.4 * 10**11 mol/yr, just one half of the last estimate. This adjustment represents 6% of the output term in the global marine silica budget.
Resumo:
Date of Acceptance: 05/06/2015 This research was made possible through funding provided by the Leverhulme Trust, the Spanish Ministry of Science and Innovation (Project CGL2010–20672) and Xunta de Galicia (grants R2014/001 and GPC2014/009). N Silva-Sánchez is currently supported by a FPU pre-doctoral grant (AP2010–3264) funded by the Spanish Government. Kirsty Golding, Andy McMullen, and Ian Simpson are thanked for their assistance with fieldwork. Alison Sandison produced the maps. Pete Langdon and two anonymous referees are thanked for comments that helped to improve the paper.
Resumo:
Date of Acceptance: 05/06/2015 This research was made possible through funding provided by the Leverhulme Trust, the Spanish Ministry of Science and Innovation (Project CGL2010–20672) and Xunta de Galicia (grants R2014/001 and GPC2014/009). N Silva-Sánchez is currently supported by a FPU pre-doctoral grant (AP2010–3264) funded by the Spanish Government. Kirsty Golding, Andy McMullen, and Ian Simpson are thanked for their assistance with fieldwork. Alison Sandison produced the maps. Pete Langdon and two anonymous referees are thanked for comments that helped to improve the paper.
Resumo:
Date of Acceptance: 05/06/2015 This research was made possible through funding provided by the Leverhulme Trust, the Spanish Ministry of Science and Innovation (Project CGL2010–20672) and Xunta de Galicia (grants R2014/001 and GPC2014/009). N Silva-Sánchez is currently supported by a FPU pre-doctoral grant (AP2010–3264) funded by the Spanish Government. Kirsty Golding, Andy McMullen, and Ian Simpson are thanked for their assistance with fieldwork. Alison Sandison produced the maps. Pete Langdon and two anonymous referees are thanked for comments that helped to improve the paper.
Resumo:
Surface samples, mostly from abyssal sediments of the South Atlantic, from parts of the equatorial Atlantic, and of the Antarctic Ocean, were investigated for clay content and clay mineral composition. Maps of relative clay mineral content were compiled, which improve previous maps by showing more details, especially at high latitudes. Large-scale relations regarding the origin and transport paths of detrital clay are revealed. High smectite concentrations are observed in abyssal regions, primarily derived from southernmost South America and from minor sources in Southwest Africa. Near submarine volcanoes of the Antarctic Ocean (South Sandwich, Bouvet Island) smectite contents exhibit distinct maxima, which is ascribed to the weathering of altered basalts and volcanic glasses. The illite distribution can be subdivided into five major zones including two maxima revealing both South African and Antarctic sources. A particularly high amount of Mg- and Fe-rich illites are observed close to East Antarctica. They are derived from biotite-bearing crystalline rocks and transported to the west by the East Antarctic Coastal Current. Chiorite and well-crystallized dioctaedral illite are typical minerals enriched within the Subantarctic and Polarfrontal-Zone but of minor importance off East Antarctica. Kaolinite dominates the clay mineral assemblage at low latitudes, where the continental source rocks (West Africa, Brazil) are mainly affected by intensive chemical weathering. Surprisingly, a slight increase of kaolinite is observed in the Enderby Basin and near the Filchner-Ronne Ice shelf. The investigated area can be subdivided into ten, large-scale clay facies zones with characteristic possible source regions and transport paths. Clay mineral assemblages of the largest part of the South Atlantic, especially of the western basins are dominated by chlorite and illite derived from the Antarctic Peninsula and southernmost South America and supported by advection within the Circumantarctic Deep Water flow. In contrast, the East Antarctic provinces are relatively small. Assemblages of the eastern basins north of 30°S are strongly influenced by African sources, controlled by weathering regimes on land and by a complex interaction of wind, river and deep ocean transport. The strong gradient in clay mineral composition at the Brazilian slope indicate a relatively low contribution of tropically derived assemblages to the western basins.
Resumo:
The study of the Upper Jurassic-Lower Cretaceous deposits (Higueruelas, Villar del Arzobispo and Aldea de Cortés Formations) of the South Iberian Basin (NW Valencia, Spain) reveals new stratigraphic and sedimentological data, which have significant implications on the stratigraphic framework, depositional environments and age of these units. The Higueruelas Fm was deposited in a mid-inner carbonate platform where oncolitic bars migrated by the action of storms and where oncoid production progressively decreased towards the uppermost part of the unit. The overlying Villar del Arzobispo Fm has been traditionally interpreted as an inner platform-lagoon evolving into a tidal-flat. Here it is interpreted as an inner-carbonate platform affected by storms, where oolitic shoals protected a lagoon, which had siliciclastic inputs from the continent. The Aldea de Cortés Fm has been previously interpreted as a lagoon surrounded by tidal-flats and fluvial-deltaic plains. Here it is reinterpreted as a coastal wetland where siliciclastic muddy deposits interacted with shallow fresh to marine water bodies, aeolian dunes and continental siliciclastic inputs. The contact between the Higueruelas and Villar del Arzobispo Fms, classically defined as gradual, is also interpreted here as rapid. More importantly, the contact between the Villar del Arzobispo and Aldea de Cortés Fms, previously considered as unconformable, is here interpreted as gradual. The presence of Alveosepta in the Villar del Arzobispo Fm suggests that at least part of this unit is Kimmeridgian, unlike the previously assigned Late Tithonian-Middle Berriasian age. Consequently, the underlying Higueruelas Fm, previously considered Tithonian, should not be younger than Kimmeridgian. Accordingly, sedimentation of the Aldea de Cortés Fm, previously considered Valangian-Hauterivian, probably started during the Tithonian and it may be considered part of the regressive trend of the Late Jurassic-Early Cretaceous cycle. This is consistent with the dinosaur faunas, typically Jurassic, described in the Villar del Arzobispo and Aldea de Cortés Fms.
Resumo:
Relief shown by hachures. Depths shown by contours and soundings.