983 resultados para Cape Grim
Resumo:
Objectives. To evaluate whether the overall dysphonia grade, roughness, breathiness, asthenia, and strain (GRBAS) scale, and the Consensus Auditory Perceptual Evaluation-Voice (CAPE-V) scale show the same reliability and consensus when applied to the same vocal sample at different times. Study Design. Observational cross-sectional study. Methods. Sixty subjects had their voices recorded according to the tasks proposed in the CAPE-V scale. Vowels /a/ and /i/ were sustained between 3 and 5 seconds. Reproduction of six sentences and spontaneous speech from the request "Tell me about your voice" were analyzed. For the analysis of the GRBAS scale, the sustained vowel and reading tasks of the sentences was used. Auditory-perceptual voice analyses were conducted by three expert speech therapists with more than 5 years of experience and familiar with both the scales. Results. A strong correlation was observed in the intrajudge consensus analysis, both for the GRBAS scale as well as for CAPE-V, with intraclass coefficient values ranging from 0.923 to 0.985. A high degree of correlation between the general GRBAS and CAPE-V grades (coefficient = 0.842) was observed, with similarities in the grades of dysphonia distribution in both scales. The evaluators indicated a mild difficulty in applying the GRBAS scale and low to mild difficulty in applying the CAPE-V scale. The three evaluators agreed when indicating the GRBAS scale as the fastest and the CAPE-V scale as the most sensitive, especially for detecting small changes in voice. Conclusions. The two scales are reliable and are indicated for use in analyzing voice quality.
Resumo:
Doctorado en Ciencias Físicas. Programa de Oceanografía y Física aplicada.
Resumo:
[EN] Filaments are narrow, shallow structures of cool water originating from the coast. They are typical features of the four main eastern boundary upwelling systems (EBUS). In spite of their significant biological and chemical roles, through the offshore exportation of nutrient-rich waters, the physical processes that generate them are still not completely understood. This paper is a process-oriented study of filament generation mechanisms. Our goal is twofold: firstly, to obtain a numerical solution able to well represent the characteristics of the filament off Cape Ghir (30°38'N, northwestern Africa) in the Canary EBUS and secondly, to explain its formation by a simple mechanism based on the balance of potential vorticity. The first goal is achieved by the use of the ROMS model (Regional Ocean Modeling System) in embedded domains around Cape Ghir, with a horizontal resolution going up to 1.5 km for the finest domain. The latter gets its initial and boundary conditions from a parent solution and is forced by climatological, high-resolution atmospheric fields. The modeled filaments display spatial, temporal and physical characteristics in agreement with the available in situ and satellite observations. This model solution is used as a reference to compare the results with a set of process-oriented experiments. These experiments allow us to reach the second objective. Their respective solution serves to highlight the contribution of various processes in the filament generation. Since the study is focused on general processes present under climatological forcing conditions, inter-annual forcing is not necessary. The underlying idea for the filament generation is the balance of potential vorticity in the Canary EBUS: the upwelling jet is characterized by negative relative vorticity and flows southward along a narrow band of uniform potential vorticity. In the vicinity of the cape, an injection of relative vorticity induced by the wind breaks the existing vorticity balance. The upwelling jet is prevented from continuing its way southward and has to turn offshore to follow lines of equal potential vorticity. The model results highlight the essential role of wind, associated with the particular topography (coastline and bottom) around the cape. The mechanism presented here is general and thus can be applied to other EBUS.
Resumo:
Universidad de Las Palmas de Gran Canaria. Facultad de Ciencias del Mar. Programa de doctorado en Oceanografía. Diploma de Estudios Avanzados