981 resultados para CYCLOOXYGENASE-2


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective. The aim of this study was to investigate the effect of CAPE on the insulin signaling and inflammatory pathway in the liver of mice with high fat diet induced obesity. Material/Methods. Swiss mice were fed with standard chow or high-fat diet for 12-week. After the eighth week, animals in the HFD group with serum glucose levels higher than 200 mg/dL were divided into two groups, HFD and HFD receiving 30 mg/kg of CAPE for 4 weeks. After 12 weeks, the blood samples could be collected and liver tissue extracted for hormonal and biochemical measurements, and insulin signaling and inflammatory pathway analyzes. Results. The high-fat diet group exhibited more weight gain, glucose intolerance, and hepatic steatosis compared with standard diet group. The CAPE treatment showed improvement in glucose sensitivity characterized by an area under glucose curve similar to the control group in an oral glucose tolerance test Furthermore, CAPE treatment promoted amelioration in hepatic steatosis compared with the high-fat diet group. The increase in glucose sensitivity was associated with the improvement in insulin-stimulated phosphorylation of the insulin receptor substrate-2, followed by an increase in Akt phosphorylation. In addition, it was observed that CAPE reduced the induction of the inflammatory pathway, c-jun-N- terminal kinase, the nuclear factor kappa B, and cyclooxygenase-2 expression, respectively. Conclusions. Overall, these findings indicate that CAPE exhibited anti-inflammatory activity that partly restores normal metabolism, reduces the molecular changes observed in obesity and insulin resistance, and therefore has a potential as a therapeutic agent in obesity. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Celecoxib (Cx) shows high efficacy in the treatment of osteoarthritis and rheumatoid arthritis as a result of its high specificity for COX-2, without gastrolesivity or interference with platelet function at therapeutic concentrations. Besides of anti-inflammatory effects, Cx also has a potential role for oral cancer chemoprevention. For these conditions, oral administration in long-term treatment is a concern due to its systemic side effects. However, local application at the site of injury (e.g., buccal inflammation conditions or chemoprevention of oral cancer) is a promising way to reduce its toxicity. In this study, the in vitro characterization of mucoadhesive chitosan (CHT) gels associated to AzoneA (R) was assessed to explore the potential buccal mucosal administration of Cx in this tissue. Rheological properties of gels were analyzed by a rheometer with cone-plate geometry. In vitro Cx release and permeability studies used artificial membranes and pig cheek mucosa, respectively. Mucoadhesion were measured with a universal test machine. CHT gels (3.0%) containing 2.0% or 3.0% Az showed more appropriate characteristics compared to the others: pH values, rheology, higher amount of Cx retained in the mucosa, and minimal permeation through mucosa, besides the highest mucoadhesion values, ideal for buccal application. Moreover, the flux (J) and amounts of drug released decreased with increased CHT and Az concentrations. CHT gels (3.0%) associated with 2.0% or 3.0% Az may be considered potential delivery systems for buccal administration of Cx.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Th1/Th2 balance represents an important factor in the pathogenesis of renal ischemia-reperfusion injury (IRI). In addition, IRI causes a systemic inflammation that can affect other tissues, such as the lungs. To investigate the ability of renal IRI to modulate pulmonary function in a specific model of allergic inflammation, C57Bl/6 mice were immunized with ovalbumin/albumen on days 0 and 7 and challenged with an ovalbumin (OA) aerosol on days 14 and 21. After 24 h of the second antigen challenge, the animals were subjected to 45 minutes of ischemia. After 24 h of reperfusion, the bronchoalveolar lavage (BAL) fluid, blood and lung tissue were collected for analysis. Serum creatinine levels increased in both allergic and non-immunized animals subjected to IRI. However, BAL analysis showed a reduction in the total cells (46%) and neutrophils (58%) compared with control allergic animals not submitted to IRI. In addition, OA challenge induced the phosphorylation of ERK and Akt and the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in lung homogenates. After renal IRI, the phosphorylation of ERK and expression of COX-2 and iNOS were markedly reduced; however, there was no difference in the phosphorylation of Akt between sham and ischemic OA-challenged animals. Mucus production was also reduced in allergic mice after renal IRI. IL-4, IL-5 and IL-13 were markedly down-regulated in immunized/challenged mice subjected to IRI. These results suggest that renal IRI can modulate lung allergic inflammation, probably by altering the Th1/Th2 balance and, at least in part, by changing cellular signal transduction factors. Copyright (C) 2012 S. Karger AG, Basel

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The modulation played by reactive oxygen species on the angiotensin II-induced contraction in type I-diabetic rat carotid was investigated. Concentration-response curves for angiotensin II were obtained in endothelium-intact or endothelium-denuded carotid from control or streptozotocin-induced diabetic rats, pre-treated with tiron (superoxide scavenger), PEG-catalase (hydrogen peroxide scavenger), dimethylthiourea (hydroxyl scavenger), apocynin [NAD(P) H oxidase inhibitor], SC560 (cyclooxygenase-1 inhibitor), SC236 (cyclooxygenase-2 inhibitor) or Y-27632 (Rho-kinase inhibitor). Reactive oxygen species were measured by flow cytometry in dihydroethidium (DHE)-loaded endothelial cells. Cyclooxygenase and AT1-receptor expression was assessed by immunohistochemistry. Diabetes increased the angiotensin II-induced contraction but reduced the agonist potency in rat carotid. Endothelium removal, tiron or apocynin restored the angiotensin II-induced contraction in diabetic rat carotid to control levels. PEG-catalase, DMTU or SC560 reduced the angiotensin II-induced contraction in diabetic rat carotid at the same extent. SC236 restored the angiotensin II potency in diabetic rat carotid. Y-27632 reduced the angiotensin II-induced contraction in endothelium-intact or -denuded diabetic rat carotid. Diabetes increased the DHE-fluorescence of carotid endothelial cells. Apocynin reduced the DHE-fluorescence of endothelial cells from diabetic rat carotid to control levels. Diabetes increased the muscular cyclooxygenase-2 expression but reduced the muscular AT1-receptor expression in rat carotid. In summary, hydroxyl radical, hydrogen peroxide and superoxide anion-derived from endothelial NAD(P) H oxidase mediate the hyperreactivity to angiotensin II in type I-diabetic rat carotid, involving the participation of cyclooxygenase-1 and Rho-kinase. Moreover, increased muscular cyclooxygenase-2 expression in type I-diabetic rat carotid seems to be related to the local reduced AT1-receptor expression and the reduced angiotensin II potency. (C) 2011 Elsevier B. V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mechanismen der zentralen und der peripheren Toleranz schützen den Körper vor Immunreaktionen gegen körpereigenes Gewebe oder gegen harmlose Umweltantigene. An der Aufrechterhaltung der peripheren Toleranz sind tolerogene Dendritische Zellen (DC) beteiligt. Tolerogene DC können in vitro u.a. mit Hilfe von immunsuppressiven und antiinflammatorischen Substanzen, aber auch durch virale Transduktionen, die zur Denovo- oder Überexpression toleranzassoziierter Moleküle führen, generiert werden. rnDa die Wirkung einiger immunmodulatorischer Substanzen über den intrazellulären sekundären Botenstoff cAMP vermittelt wird, sollte getestet werden, welchen Einfluss eine direkte Erhöhung des intrazellulären cAMP-Niveaus mittels Dibutyryl-cyclo-Adenosin-3´,5´-Mono-Phoshat (db-cAMP) auf die phänotypischen und funktionellen Eigenschaften von BM-DC („bone marrow derived dendritic cells“) hat.rnIm Vergleich zu unbehandelten BM-DC wiesen db-cAMP-DC ein vermindertes T-Zell-Stimulierungs-potenzial auf. Dieses verminderte T-Zell-Stimulierungspotenzial wird teilweise über die Proteinkinase A, nicht aber über Cyclooxygenase-2 (Cox-2) vermittelt. rnAnhand der FACS-Analyse mit DC- und MDSC- („myeloid derived suppressor cells“) spezifischen Markern konnte gezeigt werden, dass es sich bei den db-cAMP-DC um CD11c-positive DC mit einer vergleichsweise niedrigen Expression von MHCII und kostimulatorischen Oberflächenmolekülen handelt. Des Weiteren zeigte sich, dass sie verglichen mit BM-DC eine vermehrte mRNA-Expression der koinhibitorischen Moleküle B7-H1 und LIGHT und der toleranzassoziierten Moleküle FcγRIIB, HO-1 und Cox-2 aufweisen. Mittels ELISA konnte eine gesteigerte Expression der HO-1- und eine moderat gesteigerte PGE2-Synthese beobachtet werden. PGE2 wird mit Hilfe der Cox-2 aus Arachidonsäure gebildet.rnIm Gegensatz zu BM-DC wiesen db-cAMP-DC in beiden Reifungsstadien ein verändertes Zytokinprofil auf: Auf mRNA-Ebene zeigte sich, dass db-cAMP-DC verglichen mit BM-DC vermehrt IL-1RA und IL-10 exprimieren. Dieser Unterschied konnte für IL-10 auch mittels ELISA bestätigt werden. In den Kulturüberständen der stimulierten db-cAMP-DC konnte, im Gegensatz zu denen stimulierter BM-DC, kaum bioaktives IL-12 nachgewiesen werden. rnDb-cAMP-DC induzierten des Weiteren in kokultivierten allogenen T-Zellen ein differenzielles Zytokinprofil: Sie förderten die INFγ- und IL-17-Sezernierung durch T-Zellen, während die IL-5-Sezernierung geringer war, wenn T-Zellen mit stimulierten db-cAMP-DC kokultiviert wurden. Db-cAMP-DC hatten hingegen keinen Einfluss auf die IL-10-Produktion. Außerdem führte eine Kokultur der db-cAMP-DC mit allogenen T-Zellen nicht zu einer gesteigerten Induktion von FoxP3+ Treg. rnIn einem zweiten Ansatz sollte getestet werden ob es möglich ist die murine DC-Linie SP37A3 lentiviral mit dem toleranzassoziierten Oberflächenprotein B7-H3 zu transduzieren. Dies ist von Interesse, da die SP37A3-Zellen einige Vorteile gegenüber BM-DC aufweisen, wie z.B. ihren homogeneren Phänotyp und die Möglichkeit sie in einer Expansionskultur zu halten.rnEs konnte gezeigt werden, dass SP37A3-Zellen als Modell für myeloide DC für die Transduktion mit lentiviralen Partikeln geeignet sind. Hierbei zeigte es sich aber, dass darauf geachtet werden muss, mit konzentriertem Virus zu arbeiten und dass die Reportergen-Expression der Zielzellen über mehr als 3 Tage (mindestens 7 Tage) untersucht werden muss. Nur so kann eine eventuell auftretende Pseudotransduktion erkannt und verhindert werden. Ab einer MOI („multiplicity of infection“) von 50 konnte in SP37A3-Zellen eine Transgen-Expression nachgewiesen werden.rn

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cyclooxygenase-2 (COX-2) inhibitors mediate a systemic antitumor activity via antiangiogenesis and seem to enhance the response of primary tumors to radiation. Radiosensitizing effects of COX-2 inhibition have not been reported for bone metastases. Therefore, the aim of this study was the investigation of the radiosensitizing effects of the selective COX-2 inhibitor celecoxib in secondary bone tumors of a non-small cell lung carcinoma in vivo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of somatic cell count (SCC) and milk fraction on milk composition, distribution of cell populations, and mRNA expression of various inflammatory parameters was studied. Therefore, quarter milk samples were defined as cisternal (C), first 400 g of alveolar (A1), and remaining alveolar milk (A2) during the course of milking. Quarters were assigned to 4 groups according to their total SCC: 1) <12 x 10(3)/mL, 2) 12 to 100 x 10(3)/mL, 3) 100 to 350 x 10(3)/mL, and 4) >350 x 10(3)/mL. Milk constituents of interest were SCC, fat, protein, lactose sodium, and chloride ions as well as electrical conductivity. Cell populations were classified into lymphocytes, macrophages, and neutrophils (PMN). The mRNA expression of the inflammatory factors tumor necrosis factor-alpha, interleukin-1beta, cyclooxygenase-2, lactoferrin, and lysozyme was measured via real-time, quantitative reverse transcription PCR. Somatic cell count decreased from highest levels in C to lowest levels in A1 and increased thereafter to A2 in all groups. Fat content increased from C to A2 and with increasing SCC level. Lactose decreased with increasing SCC level but remained unchanged during milking. Concentrations of sodium and chloride, and electrical conductivity increased with increasing SCC but were higher in C than in A1 and A2. Protein was not affected by milk fraction or SCC level. The distribution of leukocytes was dramatically influenced by milk fraction and SCC. Lymphocytes were the dominating cell population in group 1, but the proportion of lymphocytes was low in groups 2, 3, and 4. Macrophage proportion was highest in group 2 and decreased in groups 3 and 4, whereas that of PMN increased from group 2 to 4. The content of macrophages decreased during milking in all SCC groups whereas that of PMN increased. The proportion of lymphocytes was not affected by milk fraction. The mRNA expression of all inflammatory factors showed an increase with increasing SCC but minor changes occurred during milking. In conclusion, milk fraction and SCC level have a crucial influence on the distribution of leukocyte populations and several milk constituents. The surprisingly high content of lymphocytes and concomitantly low mRNA expression of inflammatory factors in quarters with SCC <12 x 10(3)/mL indicates a different and possibly reduced readiness of the immune system to respond to invading pathogens.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ability of vitamin E to modulate signal transduction and gene expression has been observed in numerous studies; however, the detailed molecular mechanisms involved are often not clear. The eight natural vitamin E analogues and synthetic derivatives affect signal transduction with different potency, possibly reflecting their different ability to interact with specific proteins. Vitamin E modulates the activity of several enzymes involved in signal transduction, such as protein kinase C, protein kinase B, protein tyrosine kinases, 5-, 12-, and 15-lipoxygenases, cyclooxygenase-2, phospholipase A2, protein phosphatase 2A, protein tyrosine phosphatase, and diacylglycerol kinase. Activation of some these enzymes after stimulation of cell surface receptors with growth factors or cytokines can be normalized by vitamin E. At the molecular level, the translocation of several of these enzymes to the plasma membrane is affected by vitamin E, suggesting that the modulation of protein-membrane interactions may be a common theme for vitamin E action. In this review the main effects of vitamin E on enzymes involved in signal transduction are summarized and the possible mechanisms leading to enzyme modulation evaluated. The elucidation of the molecular and cellular events affected by vitamin E could reveal novel strategies and molecular targets for developing similarly acting compounds.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND ; AIMS: Selective cyclooxygenase-2 inhibitors were developed to reduce the gastrointestinal risk associated with nonsteroidal anti-inflammatory drugs (NSAIDs). The Therapeutic Arthritis Research and Gastrointestinal Event Trial was the largest study to evaluate primarily the gastrointestinal safety outcomes of selective cyclooxygenase-2 inhibitors. Data from the Therapeutic Arthritis Research and Gastrointestinal Event Trial were used to identify risk factors and investigate the safety of lumiracoxib in subgroups. METHODS: Patients with osteoarthritis (age, >or=50 y) were randomized to receive lumiracoxib 400 mg once daily, naproxen 500 mg twice daily, or ibuprofen 800 mg 3 times daily for 12 months. Events were categorized by a blinded adjudication committee. The primary end point was all definite or probable ulcer complications. RESULTS: For patients taking NSAIDs, factors associated with an increased risk of ulcer complications were age 65 years or older (hazard ratio [HR], 2.30; 95% confidence interval [CI], 1.48-3.59), previous history of gastrointestinal bleed or ulcer (HR, 3.61; 95% CI, 1.86-7.00), non-Caucasian racial origin (HR, 2.10; 95% CI, 1.35-3.27), and male sex (HR, 1.70; 95% CI, 1.08-2.68). With lumiracoxib, significant risk factors were age 65 years or older (HR, 3.18; 95% CI, 1.40-7.20), male sex (HR, 2.60; 95% CI, 1.25-5.40), non-Caucasian racial origin (HR, 2.16; 95% CI, 1.02-4.59), and concomitant aspirin use (HR, 2.89; 95% CI, 1.40-5.97). Increased risks in patients age 65 years and older were increased further if other risk factors were present. Lumiracoxib maintained an advantage over NSAIDs across all subgroups except aspirin use. CONCLUSIONS: Lumiracoxib was associated with a reduced risk of ulcer complications compared with NSAIDs in all significant subgroups except aspirin users.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The vitronectin receptor integrin alphavbeta3 promotes angiogenesis by mediating migration and proliferation of endothelial cells, but also drives fibrogenic activation of hepatic stellate cells (HSCs) in vitro. Expecting antifibrotic synergism, we studied the effect of alphavbeta3 inhibition in two in vivo models of liver fibrogenesis. Liver fibrosis was induced in rats by way of bile duct ligation (BDL) for 6 weeks or thioacetamide (TAA) injections for 12 weeks. A specific alphavbeta3 (alphavbeta5) inhibitor (Cilengitide) was given intraperitoneally twice daily at 15 mg/kg during BDL or after TAA administration. Liver collagen was determined as hydroxyproline, and gene expression was quantified by way of quantitative polymerase chain reaction. Liver angiogenesis, macrophage infiltration, and hypoxia were assessed by way of CD31, CD68 and hypoxia-inducible factor-1alpha immunostaining. Cilengitide decreased overall vessel formation. This was significant in portal areas of BDL and septal areas of TAA fibrotic rats and was associated with a significant increase of liver collagen by 31% (BDL) and 27% (TAA), and up-regulation of profibrogenic genes and matrix metalloproteinase-13. Treatment increased gamma glutamyl transpeptidase in both models, while other serum markers remained unchanged. alphavbeta3 inhibition resulted in mild liver hypoxia, as evidenced by up-regulation of hypoxia-inducible genes. Liver infiltration by macrophages/Kupffer cells was not affected, although increases in tumor necrosis factor alpha, interleukin-18, and cyclooxygenase-2 messenger RNA indicated modest macrophage activation. CONCLUSION: Specific inhibition of integrin alphavbeta3 (alphavbeta5) in vivo decreased angiogenesis but worsened biliary (BDL) and septal (TAA) fibrosis, despite its antifibrogenic effect on HSCs in vitro. Angiogenesis inhibitors should be used with caution in patients with hepatic fibrosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Immune cells in the milk are most important in combating pathogens that invade the mammary gland. This study investigated the immune competence and viability of somatic milk cells that are already resident in milk and udders free of infection. Cells were studied in freshly removed milk to simulate conditions in the udder. Effects of incubation, cell preparation, and immunological stimulation with 0.5 mug/ml lipopolysaccharide (LPS) from Escherichia coli were analysed. Viability and differential counts of milk cells between high and low somatic cell count (SCC) quarters, and cisternal and alveolar milk with and without LPS stimulation were compared. Incubation and preparation of cells caused a cell loss which further increased with time independently of SCC and milk fraction. The viability of these cells was stable until 3 h post incubation and decreased until 6 h. Cell populations differed between both investigations, but did not change during the course of the experiment. mRNA expression of immune and apoptosis factors of the cells, measured by qPCR, did not change substantially: mRNA expression of caspase 3, Toll like receptor 4, and GM-CSF did not change, whereas the expression of the death receptor Fas/APO-1 (CD95), lactoferrin and lysozyme was decreased at 6 h. Cyclooxygenase-2 and TNF-alpha mRNA expression were decreased after 6 h of LPS treatment. In comparison with other studies in vivo or in vitro (in cell culture), in this study where cells are studied ex vivo (removed from the udder but kept in their natural environment, the milk) resident milk cells seem to be more vulnerable, less viable, less able to respond to stimulation, and thus less immune competent compared with cells that have freshly migrated from blood into milk after pathogen stimulation. The cell viability and differential cell count differed between high- and low-SCC milk and between cisternal and alveolar milk depending on the individual cow. In conclusion, the results support the view that for a most effective defence against invading pathogens the mammary gland is reliant on the recruitment of fresh immune cells from the blood.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lipopolysaccharide (LPS) causes hepatic injury that is mediated, in part, by upregulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Ketamine has been shown to prevent these effects. Because upregulation of heme oxygenase-1 (HO-1) has hepatoprotective effects, as does carbon monoxide (CO), an end product of the HO-1 catalytic reaction, we examined the effects of HO-1 inhibition on ketamine-induced hepatoprotection and assessed whether CO could attenuate LPS-induced hepatic injury. One group of rats received ketamine (70 mg/kg ip) or saline concurrently with either the HO-1 inhibitor tin protoporphyrin IX (50 micromol/kg ip) or saline. Another group of rats received inhalational CO (250 ppm over 1 h) or room air. All rats were given LPS (20 mg/kg ip) or saline 1 h later and euthanized 5 h after LPS or saline. Liver was collected for iNOS, COX-2, and HO-1 (Western blot), NF-kappaB and PPAR-gamma analysis (EMSA), and iNOS and COX-2 mRNA analysis (RT-PCR). Serum was collected to measure alanine aminotransferase as an index of hepatocellular injury. HO-1 inhibition attenuated ketamine-induced hepatoprotection and downregulation of iNOS and COX-2 protein. CO prevented LPS-induced hepatic injury and upregulation of iNOS and COX-2 proteins. Although CO abolished the ability of LPS to diminish PPAR-gamma activity, it enhanced NF-kappaB activity. These data suggest that the hepatoprotective effects of ketamine are mediated primarily by HO-1 and its end product CO.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pancreatic cancer is one of the most lethal type of cancer due to its high metastasis rate and resistance to chemotherapy. Pancreatic fibrosis is a constant pathological feature of chronic pancreatitis and the hyperactive stroma associated with pancreatic cancer. Strong evidence supports an important role of cyclooxygenase-2 (COX-2) and COX-2 generated prostaglandin E2 (PGE2) during pancreatic fibrosis. Pancreatic stellate cells (PSC) are the predominant source of extracellular matrix production (ECM), thus being the key players in both diseases. Given this background, the primary objective is to delineate the role of PGE2 on human pancreatic stellate cells (PSC) hyper activation associated with pancreatic cancer. This study showed that human PSC cells express COX-2 and synthesize high levels of PGE2. PGE2 stimulated PSC migration and invasion; expression of extra cellular matrix (ECM) genes and tissue degrading matrix metallo proteinases (MMP) genes. I further identified the PGE2 EP receptor responsible for mediating these effects on PSC. Using genetic and pharmacological approaches I identified the receptor required for PGE2 mediates PSC hyper activation. Treating PSC with Specific antagonists against EP1, EP2 and EP4, demonstrated that blocking EP4 receptor only, resulted in a complete reduction of PGE2 mediated PSC activation. Furthermore, siRNA mediated silencing of EP4, but not other EP receptors, blocked the effects of PGE2 on PSC fibrogenic activity. Further examination of the downstream pathway modulators revealed that PGE2 stimulation of PSC involved CREB and not AKT pathway. The regulation of PSC by PGE2 was further investigated at the molecular level, with a focus on COL1A1. Collagen I deposition by PSC is one of the most important events in pancreatic cancer. I found that PGE2 regulates PSC through activation of COL1A1 expression and transcriptional activity. Downstream of PGE2, silencing of EP4 receptor caused a complete reduction of COL1A1 expression and activity supporting the role of EP4 mediated stimulation of PSC. Taken together, this data indicate that PGE2 regulates PSC via EP4 and suggest that EP4 can be a better therapeutic target for pancreatic cancer to reduce the extensive stromal reaction, possibly in combination with chemotherapeutic drugs can further kill pancreatic cancer cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Colon cancer is the second leading cause of cancer mortality in the U.S. Surgery is the only truly effective human colon cancer (HCC) therapy due to marked intrinsic drug resistance. The inefficacy of therapies developed for metastatic HCC suggests that advances in colon cancer chemoprevention and chemotherapy will be needed to reduce HCC mortality. The dietary fiber metabolite butyrate (NaB) is a candidate cancer chemopreventive agent that inhibits growth, promotes differentiation and stimulates apoptosis of HCC cells. Epidemiological and experimental studies suggest that dietary fiber protects against the development of HCC, however, recent large prospective trials have not found significant protection. ^ The first central hypothesis of this dissertation project is that the diversity of phenotypic changes induced by NaB in HCC cells includes molecular alterations that oppose its chemopreventive action and thereby limit its efficacy. We investigated the effect of NaB on the expression/activity of epidermal growth factor receptor (EGFR) and cyclooxygenase-2 (COX-2) in HCC HT29 cells. NaB treatment induced a 13-fold increase in EGFR expression in concert with its chemopreventive action in vitro, i.e., induction of growth suppression and G1 arrest, apoptosis and a differentiated phenotype. NaB-induced EGFR was active based on multiple lines of evidence. The EGFR was: (1) heavily phosphorylated at Tyrosine (P-Tyr); (2) associated with the cytoskeleton; (3) localized at the cell surface, and activated in response to EGF; and (4) NaB treatment of the cells induced activation of the EGFR effector Erk1/2. NaB treatment also induced a 7-fold increase in COX-2 expression. The NaB-induced COX-2 was active based on significantly increased PGE2 production. ^ The second central hypothesis is that NaB treatment would render HCC cells more chemosensitive to chemotherapy agents based on the increased apoptotic index induced by NaB. NaB treatment chemosensitized HT29 cells to 5-FU and doxorubicin, despite increases in the expression of P-glycoprotein and a related drug resistance protein (MRP). ^ These results raise the intriguing possibility that the chemopreventive effects of fiber may require concomitant treatment with EGFR and/or COX-2 inhibitors. Similarly, NaB may be a rational drug to combine with existing chemotherapeutic agents for the management of advanced HCC patients. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present study aimed to evaluate in vitro whether biomechanical loading modulates proinflammatory and bone remodeling mediators production by periodontal ligament (PDL) cells in the presence of bacterial challenge. Cells were seeded on BioFlex culture plates and exposed to Fusobacterium nucleatum ATCC 25586 and/or cyclic tensile strain (CTS) of low (CTSL) and high (CTSH) magnitudes for 1 and 3 days. Synthesis of cyclooxygenase-2 (COX2) and prostaglandin E2 (PGE2) was evaluated by ELISA. Gene expression and protein secretion of osteoprotegerin (OPG) and receptor activator of nuclear factor kappa-B ligand (RANKL) were evaluated by quantitative RT-PCR and ELISA, respectively. F. nucleatum increased the production of COX2 and PGE2, which was further increased by CTS. F. nucleatum-induced increase of PGE2 synthesis was significantly (P < 0.05) increased when CTSH was applied at 1 and 3 days. In addition, CTSH inhibited the F. nucleatum-induced upregulation of OPG at 1 and 3 days, thereby increasing the RANKL/OPG ratio. OPG and RANKL mRNA results correlated with the protein results. In summary, our findings provide original evidence that CTS can enhance bacterial-induced syntheses of molecules associated with inflammation and bone resorption by PDL cells. Therefore, biomechanical, such as orthodontic or occlusal, loading may enhance the bacterial-induced inflammation and destruction in periodontitis.