980 resultados para CROP LOSS MODELS
Resumo:
Canopy interception of incident precipitation is a critical component of the forest water balance during each of the four seasons. Models have been developed to predict precipitation interception from standard meteorological variables because of acknowledged difficulty in extrapolating direct measurements of interception loss from forest to forest. No known study has compared and validated canopy interception models for a leafless deciduous forest stand in the eastern United States. Interception measurements from an experimental plot in a leafless deciduous forest in northeastern Maryland (39°42'N, 75°5'W) for 11 rainstorms in winter and early spring 2004/05 were compared to predictions from three models. The Mulder model maintains a moist canopy between storms. The Gash model requires few input variables and is formulated for a sparse canopy. The WiMo model optimizes the canopy storage capacity for the maximum wind speed during each storm. All models showed marked underestimates and overestimates for individual storms when the measured ratio of interception to gross precipitation was far more or less, respectively, than the specified fraction of canopy cover. The models predicted the percentage of total gross precipitation (PG) intercepted to within the probable standard error (8.1%) of the measured value: the Mulder model overestimated the measured value by 0.1% of PG; the WiMo model underestimated by 0.6% of PG; and the Gash model underestimated by 1.1% of PG. The WiMo model’s advantage over the Gash model indicates that the canopy storage capacity increases logarithmically with the maximum wind speed. This study has demonstrated that dormant-season precipitation interception in a leafless deciduous forest may be satisfactorily predicted by existing canopy interception models.
Resumo:
Africa is thought to be the region most vulnerable to the impacts of climate variability and change. Agriculture plays a dominant role in supporting rural livelihoods and economic growth over most of Africa. Three aspects of the vulnerability of food crop systems to climate change in Africa are discussed: the assessment of the sensitivity of crops to variability in climate, the adaptive capacity of farmers, and the role of institutions in adapting to climate change. The magnitude of projected impacts of climate change on food crops in Africa varies widely among different studies. These differences arise from the variety of climate and crop models used, and the different techniques used to match the scale of climate model output to that needed by crop models. Most studies show a negative impact of climate change on crop productivity in Africa. Farmers have proved highly adaptable in the past to short- and long-term variations in climate and in their environment. Key to the ability of farmers to adapt to climate variability and change will be access to relevant knowledge and information. It is important that governments put in place institutional and macro-economic conditions that support and facilitate adaptation and resilience to climate change at local, national and transnational level.
Resumo:
A methodology is presented for the development of a combined seasonal weather and crop productivity forecasting system. The first stage of the methodology is the determination of the spatial scale(s) on which the system could operate; this determination has been made for the case of groundnut production in India. Rainfall is a dominant climatic determinant of groundnut yield in India. The relationship between yield and rainfall has been explored using data from 1966 to 1995. On the all-India scale, seasonal rainfall explains 52% of the variance in yield. On the subdivisional scale, correlations vary between variance r(2) = 0.62 (significance level p < 10(-4)) and a negative correlation with r(2) = 0.1 (p = 0.13). The spatial structure of the relationship between rainfall and groundnut yield has been explored using empirical orthogonal function (EOF) analysis. A coherent, large-scale pattern emerges for both rainfall and yield. On the subdivisional scale (similar to 300 km), the first principal component (PC) of rainfall is correlated well with the first PC of yield (r(2) = 0.53, p < 10(-4)), demonstrating that the large-scale patterns picked out by the EOFs are related. The physical significance of this result is demonstrated. Use of larger averaging areas for the EOF analysis resulted in lower and (over time) less robust correlations. Because of this loss of detail when using larger spatial scales, the subdivisional scale is suggested as an upper limit on the spatial scale for the proposed forecasting system. Further, district-level EOFs of the yield data demonstrate the validity of upscaling these data to the subdivisional scale. Similar patterns have been produced using data on both of these scales, and the first PCs are very highly correlated (r(2) = 0.96). Hence, a working spatial scale has been identified, typical of that used in seasonal weather forecasting, that can form the basis of crop modeling work for the case of groundnut production in India. Last, the change in correlation between yield and seasonal rainfall during the study period has been examined using seasonal totals and monthly EOFs. A further link between yield and subseasonal variability is demonstrated via analysis of dynamical data.
Resumo:
Process-based integrated modelling of weather and crop yield over large areas is becoming an important research topic. The production of the DEMETER ensemble hindcasts of weather allows this work to be carried out in a probabilistic framework. In this study, ensembles of crop yield (groundnut, Arachis hypogaea L.) were produced for 10 2.5 degrees x 2.5 degrees grid cells in western India using the DEMETER ensembles and the general large-area model (GLAM) for annual crops. Four key issues are addressed by this study. First, crop model calibration methods for use with weather ensemble data are assessed. Calibration using yield ensembles was more successful than calibration using reanalysis data (the European Centre for Medium-Range Weather Forecasts 40-yr reanalysis, ERA40). Secondly, the potential for probabilistic forecasting of crop failure is examined. The hindcasts show skill in the prediction of crop failure, with more severe failures being more predictable. Thirdly, the use of yield ensemble means to predict interannual variability in crop yield is examined and their skill assessed relative to baseline simulations using ERA40. The accuracy of multi-model yield ensemble means is equal to or greater than the accuracy using ERA40. Fourthly, the impact of two key uncertainties, sowing window and spatial scale, is briefly examined. The impact of uncertainty in the sowing window is greater with ERA40 than with the multi-model yield ensemble mean. Subgrid heterogeneity affects model accuracy: where correlations are low on the grid scale, they may be significantly positive on the subgrid scale. The implications of the results of this study for yield forecasting on seasonal time-scales are as follows. (i) There is the potential for probabilistic forecasting of crop failure (defined by a threshold yield value); forecasting of yield terciles shows less potential. (ii) Any improvement in the skill of climate models has the potential to translate into improved deterministic yield prediction. (iii) Whilst model input uncertainties are important, uncertainty in the sowing window may not require specific modelling. The implications of the results of this study for yield forecasting on multidecadal (climate change) time-scales are as follows. (i) The skill in the ensemble mean suggests that the perturbation, within uncertainty bounds, of crop and climate parameters, could potentially average out some of the errors associated with mean yield prediction. (ii) For a given technology trend, decadal fluctuations in the yield-gap parameter used by GLAM may be relatively small, implying some predictability on those time-scales.
Resumo:
The impacts of climate change on crop productivity are often assessed using simulations from a numerical climate model as an input to a crop simulation model. The precision of these predictions reflects the uncertainty in both models. We examined how uncertainty in a climate (HadAM3) and crop General Large-Area Model (GLAM) for annual crops model affects the mean and standard deviation of crop yield simulations in present and doubled carbon dioxide (CO2) climates by perturbation of parameters in each model. The climate sensitivity parameter (λ, the equilibrium response of global mean surface temperature to doubled CO2) was used to define the control climate. Observed 1966–1989 mean yields of groundnut (Arachis hypogaea L.) in India were simulated well by the crop model using the control climate and climates with values of λ near the control value. The simulations were used to measure the contribution to uncertainty of key crop and climate model parameters. The standard deviation of yield was more affected by perturbation of climate parameters than crop model parameters in both the present-day and doubled CO2 climates. Climate uncertainty was higher in the doubled CO2 climate than in the present-day climate. Crop transpiration efficiency was key to crop model uncertainty in both present-day and doubled CO2 climates. The response of crop development to mean temperature contributed little uncertainty in the present-day simulations but was among the largest contributors under doubled CO2. The ensemble methods used here to quantify physical and biological uncertainty offer a method to improve model estimates of the impacts of climate change.
Resumo:
Increased atmospheric concentrations of carbon dioxide (CO2) will benefit the yield of most crops. Two free air CO2 enrichment (FACE) meta-analyses have shown increases in yield of between 0 and 73% for C3 crops. Despite this large range, few crop modelling studies quantify the uncertainty inherent in the parameterisation of crop growth and development. We present a novel perturbed-parameter method of crop model simulation, which uses some constraints from observations, that does this. The model used is the groundnut (i.e. peanut; Arachis hypogaea L.) version of the general large-area model for annual crops (GLAM). The conclusions are of relevance to C3 crops in general. The increases in yield simulated by GLAM for doubled CO2 were between 16 and 62%. The difference in mean percentage increase between well-watered and water-stressed simulations was 6.8. These results were compared to FACE and controlled environment studies, and to sensitivity tests on two other crop models of differing levels of complexity: CROPGRO, and the groundnut model of Hammer et al. [Hammer, G.L., Sinclair, T.R., Boote, K.J., Wright, G.C., Meinke, H., Bell, M.J., 1995. A peanut simulation model. I. Model development and testing. Agron. J. 87, 1085-1093]. The relationship between CO2 and water stress in the experiments and in the models was examined. From a physiological perspective, water-stressed crops are expected to show greater CO2 stimulation than well-watered crops. This expectation has been cited in literature. However, this result is not seen consistently in either the FACE studies or in the crop models. In contrast, leaf-level models of assimilation do consistently show this result. An analysis of the evidence from these models and from the data suggests that scale (canopy versus leaf), model calibration, and model complexity are factors in determining the sign and magnitude of the interaction between CO2 and water stress. We conclude from our study that the statement that 'water-stressed crops show greater CO2 stimulation than well-watered crops' cannot be held to be universally true. We also conclude, preliminarily, that the relationship between water stress and assimilation varies with scale. Accordingly, we provide some suggestions on how studies of a similar nature, using crop models of a range of complexity, could contribute further to understanding the roles of model calibration, model complexity and scale. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Reanalysis data provide an excellent test bed for impacts prediction systems. because they represent an upper limit on the skill of climate models. Indian groundnut (Arachis hypogaea L.) yields have been simulated using the General Large-Area Model (GLAM) for annual crops and the European Centre for Medium-Range Weather Forecasts (ECMWF) 40-yr reanalysis (ERA-40). The ability of ERA-40 to represent the Indian summer monsoon has been examined. The ability of GLAM. when driven with daily ERA-40 data, to model both observed yields and observed relationships between subseasonal weather and yield has been assessed. Mean yields "were simulated well across much of India. Correlations between observed and modeled yields, where these are significant. are comparable to correlations between observed yields and ERA-40 rainfall. Uncertainties due to the input planting window, crop duration, and weather data have been examined. A reduction in the root-mean-square error of simulated yields was achieved by applying bias correction techniques to the precipitation. The stability of the relationship between weather and yield over time has been examined. Weather-yield correlations vary on decadal time scales. and this has direct implications for the accuracy of yield simulations. Analysis of the skewness of both detrended yields and precipitation suggest that nonclimatic factors are partly responsible for this nonstationarity. Evidence from other studies, including data on cereal and pulse yields, indicates that this result is not particular to groundnut yield. The detection and modeling of nonstationary weather-yield relationships emerges from this study as an important part of the process of understanding and predicting the impacts of climate variability and change on crop yields.
Resumo:
The impacts of climate change on crop productivity are often assessed using simulations from a numerical climate model as an input to a crop simulation model. The precision of these predictions reflects the uncertainty in both models. We examined how uncertainty in a climate (HadAM3) and crop General Large-Area Model (GLAM) for annual crops model affects the mean and standard deviation of crop yield simulations in present and doubled carbon dioxide (CO2) climates by perturbation of parameters in each model. The climate sensitivity parameter (lambda, the equilibrium response of global mean surface temperature to doubled CO2) was used to define the control climate. Observed 1966-1989 mean yields of groundnut (Arachis hypogaea L.) in India were simulated well by the crop model using the control climate and climates with values of lambda near the control value. The simulations were used to measure the contribution to uncertainty of key crop and climate model parameters. The standard deviation of yield was more affected by perturbation of climate parameters than crop model parameters in both the present-day and doubled CO2 climates. Climate uncertainty was higher in the doubled CO2 climate than in the present-day climate. Crop transpiration efficiency was key to crop model uncertainty in both present-day and doubled CO2 climates. The response of crop development to mean temperature contributed little uncertainty in the present-day simulations but was among the largest contributors under doubled CO2. The ensemble methods used here to quantify physical and biological uncertainty offer a method to improve model estimates of the impacts of climate change.
Resumo:
Sediment and P inputs to freshwaters from agriculture are a major problem in the United Kingdom (UK). This study investigated mitigation options for diffuse pollution losses from arable land. Field trials were undertaken at the hillslope scale over three winters at three UK sites with silt (Oxyaquic Hapludalf), sand (Udic Haplustept), and clay (Typic Haplaquept) soils. None of the mitigation treatments was effective in every year trialled, but each showed overall average reductions in losses. Over five site years, breaking up the compaction in tramlines (tractor wheel tracks) using a tine reduced losses of sediment and P to losses similar to those observed from areas without tramlines, with an average reduction in P loss of 1.06 kg TP ha(-1) Compared to traditional plowing, TP losses under minimum tillage were reduced by 0.30 kg TT ha(-1) over five site years, TP losses under contour cultivation were reduced by 0.30 kg TP ha(-1) over two site years, and TP losses using in-field barriers were reduced by 0.24 kg TP ha(-1) over two site years. In one site year, reductions in losses due to crop residue incorporation were nor significant. Each of the mitigation options trialled. is associated with a small cost at the farm-scale of up to 5 pound ha(-1), or with cost savings. The results indicate that each of the treatments his the potential to be a cost-effective mitigation option, but that tramline management is the most promising treatment, because tramlines dominate sediment and P transfer in surface runoff from arable hillslopes.
Resumo:
Samples of whole crop wheat (WCW, n = 134) and whole crop barley (WCB, n = 16) were collected from commercial farms in the UK over a 2-year period (2003/2004 and 2004/2005). Near infrared reflectance spectroscopy (NIRS) was compared with laboratory and in vitro digestibility measures to predict digestible organic matter in the dry matter (DOMD) and metabolisable energy (ME) contents measured in vivo using sheep. Spectral models using the mean spectra of two scans were compared with those using individual spectra (duplicate spectra). Overall NIRS accurately predicted the concentration of chemical components in whole crop cereals apart from crude protein. ammonia-nitrogen, water-soluble carbohydrates, fermentation acids and solubility values. In addition. the spectral models had higher prediction power for in vivo DOMD and ME than chemical components or in vitro digestion methods. Overall there Was a benefit from the use of duplicate spectra rather than mean spectra and this was especially so for predicting in vivo DOMD and ME where the sample population size was smaller. The spectral models derived deal equally well with WCW and WCB and Would he of considerable practical value allowing rapid determination of nutritive value of these forages before their use in diets of productive animals. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
It is well established that crop production is inherently vulnerable to variations in the weather and climate. More recently the influence of vegetation on the state of the atmosphere has been recognized. The seasonal growth of crops can influence the atmosphere and have local impacts on the weather, which in turn affects the rate of seasonal crop growth and development. Considering the coupled nature of the crop-climate system, and the fact that a significant proportion of land is devoted to the cultivation of crops, important interactions may be missed when studying crops and the climate system in isolation, particularly in the context of land use and climate change. To represent the two-way interactions between seasonal crop growth and atmospheric variability, we integrate a crop model developed specifically to operate at large spatial scales (General Large Area Model for annual crops) into the land surface component of a global climate model (GCM; HadAM3). In the new coupled crop-climate model, the simulated environment (atmosphere and soil states) influences growth and development of the crop, while simultaneously the temporal variations in crop leaf area and height across its growing season alter the characteristics of the land surface that are important determinants of surface fluxes of heat and moisture, as well as other aspects of the land-surface hydrological cycle. The coupled model realistically simulates the seasonal growth of a summer annual crop in response to the GCM's simulated weather and climate. The model also reproduces the observed relationship between seasonal rainfall and crop yield. The integration of a large-scale single crop model into a GCM, as described here, represents a first step towards the development of fully coupled crop and climate models. Future development priorities and challenges related to coupling crop and climate models are discussed.
Resumo:
Pollination by bees and other animals increases the size, quality, or stability of harvests for 70% of leading global crops. Because native species pollinate many of these crops effectively, conserving habitats for wild pollinators within agricultural landscapes can help maintain pollination services. Using hierarchical Bayesian techniques, we synthesize the results of 23 studies - representing 16 crops on five continents - to estimate the general relationship between pollination services and distance from natural or semi-natural habitats. We find strong exponential declines in both pollinator richness and native visitation rate. Visitation rate declines more steeply, dropping to half of its maximum at 0.6 km from natural habitat, compared to 1.5 km for richness. Evidence of general decline in fruit and seed set - variables that directly affect yields - is less clear. Visitation rate drops more steeply in tropical compared with temperate regions, and slightly more steeply for social compared with solitary bees. Tropical crops pollinated primarily by social bees may therefore be most susceptible to pollination failure from habitat loss. Quantifying these general relationships can help predict consequences of land use change on pollinator communities and crop productivity, and can inform landscape conservation efforts that balance the needs of native species and people.
Resumo:
Temperate-zone crops require a period of winter chilling to terminate dormancy and ensure adequate bud break the following spring. The exact chilling requirement of blackcurrant (Ribes nigrum), a commercially important crop in northern Europe, is relatively unknown. Chill unit models have been successfully utilized to determine the optimum chilling temperature of a range of crops, with one chill unit equating to I h exposure to the optimum temperature for chill satisfaction. Two-year-old R. nigrum plants of the cultivars 'Ben Gairn', 'Ben Hope' and 'Ben Tirran' were exposed to temperatures of -10.1 degrees C. -3.4 degrees C. 0.1 degrees C, 1.5 degrees C, 2.1 degrees C, 3.4 degrees C or 8.9 degrees C (+/- 0.7 degrees C) for durations of 0, 2, 4, 6, 8 or 10 weeks and multiple regression analyses used to determine the optimum temperature for chill satisfaction. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A comparison of the models of Vitti et al. (2000, J. Anim. Sci. 78, 2706-2712) and Fernandez (1995c, Livest. Prod. Sci. 41, 255-261) was carried out using two data sets on growing pigs as input. The two models compared were based on similar basic principles, although their aims and calculations differed. The Vitti model employs the rate:state formalism and describes phosphorus (P) flow between four pools representing P content in gut, blood, bone and soft tissue in growing goats. The Fernandez model describes flow and fractional recirculation between P pools in gut, blood and bone in growing pigs. The results from both models showed similar trends for P absorption from gut to blood and net retention in bone with increasing P intake, with the exception of the 65 kg results from Date Set 2 calculated using the FernAndez model. Endogenous loss from blood back to gut increased faster with increasing P intake in the FernAndez than in the Vitti model for Data Set 1. However, for Data Set 2, endogenous loss increased with increasing P intake using the Vitti model, but decreased when calculated using the FernAndez model. Incorporation of P into bone was not influenced by intake in the FernAndez model, while in the Vitti model there was an increasing trend. The FernAndez model produced a pattern of decreasing resorption in bone with increasing P intake, with one of the data sets, which was not observed when using the Vitti model. The pigs maintained their P homeostasis in blood by regulation of P excretion in urine. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Technology involving genetic modification of crops has the potential to make a contribution to rural poverty reduction in many developing countries. Thus far, pesticide-producing Bacillus thuringensis (Bt) varieties of cotton have been the main GM crops under cultivation in developing nations. Several studies have evaluated the farm-level performance of Bt varieties in comparison to conventional ones by estimating production technology, and have mostly found Bt technology to be very successful in raising output and/or reducing pesticide input. However, the production risk properties of this technology have not been studied, although they are likely to be important to risk-averse smallholders. This study investigates the output risk aspects of Bt technology by estimating two 'flexible risk' production function models allowing technology to independently affect the mean and higher moments of output. The first is the popular Just-Pope model and the second is a more general 'damage control' flexible risk model. The models are applied to cross-sectional data on South African smallholders, some of whom used Bt varieties. The results show no evidence that a 'risk-reduction' claim can be made for Bt technology. Indeed, there is some evidence to support the notion that the technology increases output risk, implying that simple (expected) profit computations used in past evaluations may overstate true benefits.