959 resultados para COSMIC COINCIDENCE
Resumo:
The energy deposition by slowing-down of energetic ionizing particles in the atmosphere enhances the production of constituent concentration which perturbs and eventually destroys the ozone (OZ) layer. Near the Brazilian anomaly region the cosmic-ray (CR) intensity varies greatly due to the magnetic activity in that region. In order to study these variations, stratospheric balloons were launched to measure, simultaneously, the CR and OZ fluxes in the atmosphere. The Fourier-analysed data collected during the flight on April 22, 1989 show evidences of a short-period variation for both fluxes measured. Attempts to verify the physical mechanisms which associate the CR change with the OZ one are not conclusive due to limited data observed on that event. © 1993 Società Italiana di Fisica.
Resumo:
The magnetostatic field of an infinite rectilinear current placed in the stationary gravitational field of a rotating cosmic string is found. An interesting aspect of this problem is that although the metric is mathematically very simple, its physical meaning is not trivial. It depends only on topological parameters. So, the cosmic string vacuum space-time is locally equivalent to the Minkowski space-time, but not globally. The calculations are so simple that they can easily be shown in the classroom. © 1997 American Association of Physics Teachers.
Resumo:
We present a modified version of the cosmic crystallography method, especially useful for testing closed models of negative spatial curvature. The images of clusters of galaxies in simulated catalogs are 'pulled back' to the fundamental domain before the set of distances is calculated. © 1999 Published by Elsevier Science B.V. All rights reserved.
Resumo:
Neutrinos mediate long range forces among macroscopic bodies in a vacuum. When the bodies are placed in the neutrino cosmic background, these forces are modified. Indeed, at distances long compared to the scale T -1, the relic neutrinos completely screen off the two-neutrino exchange force, whereas for small distances the interaction remains unaffected. ©2000 The American Physical Society.
Resumo:
Research on Blindsight, Neglect/Extinction and Phantom limb syndromes, as well as electrical measurements of mammalian brain activity, have suggested the dependence of vivid perception on both incoming sensory information at primary sensory cortex and reentrant information from associative cortex. Coherence between incoming and reentrant signals seems to be a necessary condition for (conscious) perception. General reticular activating system and local electrical synchronization are some of the tools used by the brain to establish coarse coherence at the sensory cortex, upon which biochemical processes are coordinated. Besides electrical synchrony and chemical modulation at the synapse, a central mechanism supporting such a coherence is the N-methyl-D-aspartate channel, working as a 'coincidence detector' for an incoming signal causing the depolarization necessary to remove Mg 2+, and reentrant information releasing the glutamate that finally prompts Ca 2+ entry. We propose that a signal transduction pathway activated by Ca 2+ entry into cortical neurons is in charge of triggering a quantum computational process that accelerates inter-neuronal communication, thus solving systemic conflict and supporting the unity of consciousness. © 2001 Elsevier Science Ltd.
Resumo:
The gravitational properties of a straight cosmic string are studied in the linear approximation of higher-derivative gravity. These properties are shown to be very different from those found using linearized Einstein gravity: there exists a short range gravitational (anti-gravitational) force in the nonrelativistic limit; in addition, the deflection angle of a light ray moving in a plane orthogonal to the string depends on the impact parameter. © 2008 World Scientific Publishing Company.
Resumo:
We review the basic hypotheses which motivate the statistical framework used to analyze the cosmic microwave background, and how that framework can be enlarged as we relax those hypotheses. In particular, we try to separate as much as possible the questions of gaussianity, homogeneity, and isotropy from each other. We focus both on isotropic estimators of nongaussianity as well as statistically anisotropic estimators of gaussianity, giving particular emphasis on their signatures and the enhanced cosmic variances that become increasingly important as our putative Universe becomes less symmetric. After reviewing the formalism behind some simple model-independent tests, we discuss how these tests can be applied to CMBdata when searching for large-scale anomalies. Copyright © 2010 L. Raul Abramo and Thiago S. Pereira.
Resumo:
The CMS Collaboration conducted a month-long data-taking exercise known as the Cosmic Run At Four Tesla in late 2008 in order to complete the commissioning of the experiment for extended operation. The operational lessons resulting from this exercise were addressed in the subsequent shutdown to better prepare CMS for LHC beams in 2009. The cosmic data collected have been invaluable to study the performance of the detectors, to commission the alignment and calibration techniques, and to make several cosmic ray measurements. The experimental setup, conditions, and principal achievements from this data-taking exercise are described along with a review of the preceding integration activities. © 2010 IOP Publishing Ltd and SISSA.
Resumo:
The CMS Level-1 trigger was used to select cosmic ray muons and LHC beam events during data-taking runs in 2008, and to estimate the level of detector noise. This paper describes the trigger components used, the algorithms that were executed, and the trigger synchronisation. Using data from extended cosmic ray runs, the muon, electron/photon, and jet triggers have been validated, and their performance evaluated. Efficiencies were found to be high, resolutions were found to be good, and rates as expected. © 2010 IOP Publishing Ltd and SISSA.
Resumo:
The performance of the Local Trigger based on the drift-tube system of the CMS experiment has been studied using muons from cosmic ray events collected during the commissioning of the detector in 2008. The properties of the system are extensively tested and compared with the simulation. The effect of the random arrival time of the cosmic rays on the trigger performance is reported, and the results are compared with the design expectations for proton-proton collisions and with previous measurements obtained with muon beams. © 2010 IOP Publishing Ltd and SISSA.
Resumo:
The CMS experiment uses self-triggering arrays of drift tubes in the barrel muon trigger to perform the identification of the correct bunch crossing. The identification is unique only if the trigger chain is correctly synchronized. In this paper, the synchronization performed during an extended cosmic ray run is described and the results are reported. The random arrival time of cosmic ray muons allowed several synchronization aspects to be studied and a simple method for the fine synchronization of the Drift Tube Local Trigger at LHC to be developed. © 2010 IOP Publishing Ltd and SISSA.
Resumo:
The CMS High-Level Trigger (HLT) is responsible for ensuring that data samples with potentially interesting events are recorded with high efficiency and good quality. This paper gives an overview of the HLT and focuses on its commissioning using cosmic rays. The selection of triggers that were deployed is presented and the online grouping of triggered events into streams and primary datasets is discussed. Tools for online and offline data quality monitoring for the HLT are described, and the operational performance of the muon HLT algorithms is reviewed. The average time taken for the HLT selection and its dependence on detector and operating conditions are presented. The HLT performed reliably and helped provide a large dataset. This dataset has proven to be invaluable for understanding the performance of the trigger and the CMS experiment as a whole. © 2010 IOP Publishing Ltd and SISSA.
Resumo:
The CMS Collaboration conducted a month-long data taking exercise, the Cosmic Run At Four Tesla, during October-November 2008, with the goal of commissioning the experiment for extended operation. With all installed detector systems participating, CMS recorded 270 million cosmic ray events with the solenoid at a magnetic field strength of 3.8 T. This paper describes the data flow from the detector through the various online and offline computing systems, as well as the workflows used for recording the data, for aligning and calibrating the detector, and for analysis of the data. © 2010 IOP Publishing Ltd and SISSA.
Resumo:
The pixel detector of the Compact Muon Solenoid experiment consists of three barrel layers and two disks for each endcap. The detector was installed in summer 2008, commissioned with charge injections, and operated in the 3.8 T magnetic field during cosmic ray data taking. This paper reports on the first running experience and presents results on the pixel tracker performance, which are found to be in line with the design specifications of this detector. The transverse impact parameter resolution measured in a sample of high momentum muons is 18 microns. © 2010 IOP Publishing Ltd and SISSA.
Resumo:
The CMS silicon tracker, consisting of 1440 silicon pixel and 15 148 silicon strip detector modules, has been aligned using more than three million cosmic ray charged particles, with additional information from optical surveys. The positions of the modules were determined with respect to cosmic ray trajectories to an average precision of 3-4 microns RMS in the barrel and 3-14 microns RMS in the endcap in the most sensitive coordinate. The results have been validated by several studies, including laser beam cross-checks, track fit self-consistency, track residuals in overlapping module regions, and track parameter resolution, and are compared with predictions obtained from simulation. Correlated systematic effects have been investigated. The track parameter resolutions obtained with this alignment are close to the design performance. © 2010 IOP Publishing Ltd and SISSA.