912 resultados para CORROSION RESISTANT ALLOYS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of bath composition and electroplating conditions on structure, morphology, and composition of amorphous Fe-Cr-P-Co deposits on AISI 1020 steel substrate, priorly plated with a thin Cu deposit, were investigated. The increase of charge density activates the inclusion of Cr in the deposit. However, above specific values of the charge density, which depend on the deposition current density, the Cr content in the deposit decreases. This Cr content decreasing is probably due to the significant hydrogen evolution with the increasing of deposition cur-rent and charge density. The effect of charge density on the content of Fe and Co is not clear. However, there is a tendency of increasing of Fe content and decreasing of Co content with the raising of current density. The Co is more easily deposited than the P, and its presence results in a more intense inhibition effect on the Cr deposition than the inhibition effect caused by P presence. Scanning electron microscope (SEM) analysis showed that Co increasing in the Fe-Cr-P-Co alloys analyzed does not promote the susceptibility to microcracks, which led to a good quality deposit. The passive film of the Fe-Cr-P-Co alloy shows a high ability formation and high protective capacity, and the results obtained by current density of corrosion, j(cor), show that the deposit with addition of Co, Fe31Cr11P28Co30, presents a higher corrosion resistance than the deposit with addition of Ni, Fe54Cr21P20Ni5. (C) 2004 Published by Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A digital image processing and analysis method has been developed to classify shape and evaluate size and morphology parameters of corrosion pits. This method seems to be effective to analyze surfaces with low or high degree of pitting formation. Theoretical geometry data have been compared against experimental data obtained for titanium and aluminum alloys subjected to different corrosion tests. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Corrosion phenomena in a dental copper-based alloy are experimentally studied using electrochemical techniques. Two heating sources, torch and induction, were used in the casting experiments. In the corrosion essays, the optimum casting cycle and the polarization curves were obtained. It was found that the heating sources have little influence on the corrosion processes of the metallic alloys studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This job aim has been to study the aqueous corrosion of the 7xxx heattreatable aluminium alloys, used in the aeronautical industry. The 7010, 7050 and 7475 alloys, have been supplied in the T7 condition and submitted to the annealed and aging thermal treatments of in order to study their behaviours front to corrosion in 5% NaCl pH 6,0, air-saturated and deaerated solutions. The electrochemical study has been accomplished through potential measures in open circuit, potentiodynamic polarisation curves and electrochemical impedance spectroscopy (EIS). The aged alloy resulted to be the most resistant to corrosion and annealed the less resistant ones. In spite of it they have different chemical compositions, in each mean, the alloy with the same thermal treatment has behaved in a similar way. In aerated solution, the process is controlled by oxygen diffusion and in oxygen absence for dissolution through a film. Hardness and mass loss measures, after corrosion test, have supported this research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Titanium and its alloys provide high strength-to-weight ratios, good fatigue strength and increased corrosion resistance compared with others materials. Its acceptance in aerospace has been limited by costs considerations such as high cost of raw material, high buy-to-fly ratios and expensive machining operations. Significant cost reductions can be obtained by vacuum sintering and powder metallurgy (P/M) techniques by producing near net shapes and consequently minimizing material waste and machining time. The Ti 35Nb alloy exhibit a low modulus of elasticity. Stemming from the unique combination of high strength, low modulus of elasticity and low density, this alloy is intrinsically more resistant to shock and explosion damages than most other engineering materials. Samples were produced by mixing of initial metallic powders followed by uniaxial and cold isostatic pressing with subsequent densification by sintering between 900 and 1600 °C, in vacuum. Sintering behavior was studied by means of dilatometry. Sintered samples were characterized for phase composition, microstructure and microhardness by X-ray diffraction, scanning electron microscopy and Vickers indentation, respectively. Density was measured by Archimedes method. Copyright © 2004 Society of Automotive Engineers, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The corrosion behaviour of metal matrix composites (MMCs) is strictly linked with the presence of heterogeneities such as reinforcement phase, microcrevices, porosity, secondary phase precipitates, and interaction products. Most of the literature related to corrosion behaviour of aluminium matrix composites (AMCs) is focused on SiC reinforced AMCs. On the other hand, there is very limited information available in the literature related to the tribocorrosion behaviour of AMCs. Therefore, the present work aims to investigate corrosion and tribocorrosion behaviour of Al-Si-Cu-Mg alloy matrix composites reinforced with B4C particulates. Corrosion behaviour of 15 and 19% (vol) B4C reinforced Al-Si-Cu-Mg matrix composites and the base alloy was investigated in 0.05M NaCl solution by performing immersion tests and potentiodynamic polarisation tests. Tribocorrosion behaviour of Al-Si-Cu-Mg alloy and its composites were also investigated in 0.05M NaCl solution. The tests were carried out against alumina ball using a reciprocating ball-on-plate tribometer. Electrochemical measurements were performed before, during, and after the sliding tests together with the recording of the tangential force. Results suggest that particle addition did not affect significantly the tendency of corrosion of Al-Si-Cu-Mg alloy without mechanical interactions. During the tribocorrosion tests, the counter material was found to slide mainly on the B4C particles, which protected the matrix alloy from severe wear damage. Furthermore, the wear debris were accumulated on the worn surfaces and entrapped between the reinforcing particles. Therefore, the tendency of corrosion and the corrosion rate decreased in Al-Si-Cu-Mg matrix B4C reinforced composites during the sliding in 0.05M NaCl solution. © 2013 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structural durability is an important design criterion, which must be assessed for every type of structure. In this regard, especial attention must be addressed to the durability of reinforced concrete (RC) structures. When RC structures are located in aggressive environments, its durability is strongly reduced by physical/chemical/mechanical processes that trigger the corrosion of reinforcements. Among these processes, the diffusion of chlorides is recognized as one of major responsible of corrosion phenomenon start. To accurate modelling the corrosion of reinforcements and to assess the durability of RC structures, a mechanical model that accounts realistically for both concrete and steel mechanical behaviour must be considered. In this context, this study presents a numerical nonlinear formulation based on the finite element method applied to structural analysis of RC structures subjected to chloride penetration and reinforcements corrosion. The physical nonlinearity of concrete is described by Mazars damage model whereas for reinforcements elastoplastic criteria are adopted. The steel loss along time due to corrosion is modelled using an empirical approach presented in literature and the chloride concentration growth along structural cover is represented by Fick's law. The proposed model is applied to analysis of bended structures. The results obtained by the proposed numerical approach are compared to responses available in literature in order to illustrate the evolution of structural resistant load after corrosion start. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this work was to evaluate the corrosion resistance of AuPdAgIn alloy, submitted to laser beam welding, in 0.9% NaCl solution, using electrochemical techniques. Measures of the open circuit potential (OCP) versus time were applied to electrochemical experiments, as well as potentiodynamic direct scanning (PDS) and electrochemical impedance spectroscopy (EIS) on AuPdAgIn alloy, submitted to laser beam welding in 0.9% NaCl solution. Some differences observed in the microstructure can explain the results obtained for corrosion potential, Ecorr, and corrosion resistance, Rp. EIS spectra have been characterized by distorted capacitive components, presenting linear impedance at low frequencies, including a non-uniform diffusion. The area of the laser weld presented corrosion potential slightly superior when compared to the one of the base metal. The impedance results suggest the best resistant corrosion behavior for laser weld than base metal region. This welding process is a promising alternative to dental prostheses casting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIM: To evaluate the adherence of Streptococcus mutans to the surface of the amalgam and copper/aluminum alloy samples and also evaluate the release of metallic ions. METHODS: The prepared medium was changed every 72 h and analyzed by atomic absorption spectrophotometer. Samples were removed from the prepared medium at 15, 30, 48 and 60 days. RESULTS: The result shows that ions released were statistically different among all groups, and so were both biofilm and pits formation and the corrosion induced by the S. mutans in both types of samples. SEM observation of the samples immersed in the prepared medium with S. mutans showed adherence of microorganisms on the whole surface, in all groups. CONCLUSIONS: The S. mutans adhere to both amalgam and copper/aluminum alloy causing corrosion of those restorations. S. mutans produced a greater ions release in Cu/Al alloy; in amalgam, the ions release was not influenced by exposure to S. mutans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrochemical behaviour of Cu, Cu-Al and Cu-Al-Ag alloys in aqueous solutions of NaCl (0.5 M, pH = 3.00) was studied by means of voltammetric methods and electrochemical impedance spectroscopy. The surfaces were examined by SEM and EDX analysis. Cu-Al-Ag alloy shows a potentiodynamic behaviour similar to that of the pure copper electrode while the Cu-Al alloy presents some minor differences. In the active dissolution region the electrodes suffer pitting corrosion and in the other potential regions there are the formation of a passivant film with composition depending on the potential. The impedance responses of the electrodes are discussed. An electrodissolution mechanism is proposed and the effect of the alloying elements upon the impedance response and polarisation curves is explained. The main effects are due to the production of copper and silver chlorides and aluminium oxides/ hydroxides at the corroding interface. The addition of Al or (Al + Ag) increases the corrosion resistance of pure copper. © 1995.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recasting process influence upon corrosion behavior of Co-Cr-Mo dental alloy in simulated physiological serum has been investigated using chemical and electrochemical techniques. Recast Co-Cr-Mo alloy by induction (IND) or by blowtorch (FLAME) has exhibited similar dendritic structures. Both IND and FLAME alloys have presented good corrosion resistance in physiological serum. Passivation process provides this corrosion resistance. Codissolution makes this process difficult. Passive films, formed on these alloys, have been analyzed as a dual layer consisting of an inner barrier and an outer porous layer. Passive film protective characteristics are higher in FLAME than in IND alloy. On this last alloy, the passive film is more porous due to a higher Codissolution. ©Carl Hanser Verlag, München.