903 resultados para CONVERSION COATINGS
Resumo:
Electrodeposition of Co-W alloy coatings has been carried out with DC and PC using gluconate bath at different pH. These coatings are characterized for their structure, morphology and chemical composition by X-ray diffraction, field emission scanning electron microscopy, differential scanning calorimetry and X-ray photoelectron spectroscopy (XPS). Alloy coatings plated at pH8 are crystalline, whereas coatings electrodeposited at pH5 are nanocrystalline in nature. XPS studies have demonstrated that as-deposited alloy plated at pH8 with DC contain only Co2+ and W6+ species, whereas that alloy plated at pH5 has significant amount of Co-0 and W-0 along with Co2+ and W6+ species. Again, Co2+ and W6+ are main species in all as-deposited PC plated alloys in both pH. Co-0 concentration increases upon successive sputtering of all alloy coatings. In contrast, mainly W6+ species is detected in the following layers of all alloys plated with PC. Alloys plated at pH5 show higher microhardness compared to their pH8 counterparts.
Resumo:
We report a simple method to fabricate multifunctional polyelectrolyte thin films to load and deliver the therapeutic drugs. The multilayer thin films were assembled by the electrostatic adsorption of poly (allylamine hydrochloride) (PAH) and dextran sulfate (DS). The silver nanoparticles (Ag NPs) biosynthesized from novel Hybanthus enneaspermus leaf extract as the reducing agent were successfully incorporated into the film. The biosynthesized Ag NPs showed excellent antimicrobial activity against the range of enteropathogens, which could be significantly enhanced when used with commercial antibiotics. The assembled silver nano composite multilayer films showed rupture and deformation when they are exposed to laser. The Ag NPs act as an energy absorption center, locally heat up the film and rupture it under laser treatment. The antibacterial drug, moxifloxacin hydrochloride (MH) was successfully loaded into the multilayer films. The total amount of MH release observed was about 63% which increased to 85% when subjected to laser light exposure. Thus, the polyelectrolyte thin film reported in our study has significant potential in the field of remote activated drug delivery, antibacterial coatings and wound dressings. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Silver nanoparticles with an average size of 23 nm were chemically synthesized and used to fabricate Zn-Ag composite coatings. The Zn-Ag composite coatings were generated by electrodeposition method using a simple sulfate plating bath dispersed with 0.5, land 1.5 g/l of Ag nanoparticles. Scanning electron microscopy, X-ray diffraction and texture co-efficient calculations revealed that Ag nanoparticles appreciably influenced the morphology, micro-structure and texture of the deposit. It was also noticed that agglomerates of Ag nanopartides, in the case of high bath load conditions, produced defects and dislocations on the deposit surface. Ag nanoparticles altered the corrosion resistance property of Zn-Ag composite coatings as observed from Tafel polarization, electrochemical impedance analysis and an immersion test. Reduction in corrosion rate with increased charge transfer resistance was observed for Zn-Ag composite coatings when compared to a pure Zn coating. However, the particle concentration in the plating bath and their agglomeration state directly influenced the surface morphology and the subsequent corrosion behavior of the deposits. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
Direct current electrodeposition of Co-P alloy coatings were carried out using gluconate bath and they were characterized by employing techniques like XRD, FESEM, DSC and XPS. Broad XRD lines demonstrate the amorphous nature of Co-P coatings. Spherical and rough nodules are observed on the surface of coatings as seen from FESEM images. Three exothermic peaks around 290, 342 and 390 degrees C in DSC profiles of Co-P coatings could be attributed to the crystallization and formation of Co2P phase in the coatings. As-deposited coatings consist of Co metal and oxidized Co species as revealed by XPS studies. Bulk alloy P (P delta-) as well as oxidized P (P5+) are present on the surface of coatings. Concentrations of Co metal and P delta- increase with successive sputtering of the coating. Observed microhardness value is 1005 HK when Co-P coating obtained from 10 g L-1 NaH2PO2 is heated at 400 degrees C that is comparable with hard chromium coatings.
Resumo:
We report large scale deposition of tapered zinc oxide (ZnO) nanorods on Si(100) substrate by using newly designed metal-organic complex of zinc (Zn) as the precursor, and microwave irradiation assisted chemical synthesis as a process. The coatings are uniform and high density ZnO nanorods (similar to 1.5 mu m length) grow over the entire area (625 mm(2)) of the substrate within 1-5 min of microwave irradiation. ZnO coatings obtained by solution phase deposition yield strong UV emission. Variation of the molecular structure/molecular weight of the precursors and surfactants influence the crystallinity, morphology, and optical properties of ZnO coatings. The precursors in addition with the surfactant and the solvent are widely used to obtain desired coating on any substrate. The growth mechanism and the schematics of the growth process of ZnO coatings on Si(100) are discussed. (c) 2013 Elsevier B.V. All rights reserved.
Resumo:
Autocatalytic duplex Ni-P/Ni-W-P coatings were deposited on AZ31B magnesium alloy using stabilizer free nickel carbonate bath. Some of the coated specimens were passivated in chromate solution with and without heat treatment. Plain Ni-P coatings were also prepared for comparison. Coatings were characterized for their surface morphology, composition and corrosion resistance. Energy dispersive analysis of X-ray (EDX) showed that the phosphorous content in the Ni-P coating is 6 wt.% and for Ni-W-P it reduced to 3 wt.% due to the codeposition of tungsten in the Ni-P coating. Marginal increase in P and W contents was observed on passivated coupons along with Cr (0.18 wt.%) and O (2.8 wt.%) contents. Field emission scanning electron microscopy (FESEM) examination of these coating surfaces exhibited the nodular morphology. Chromate passivated surfaces showed the presence of uniformly distributed bright Ni particles along with nodules. Potenfiodynamic polarization and electrochemical impedance spectroscopy (EIS) studies were carried out in deaerated 0.15 M NaCI solution to find out the corrosion resistance of the coatings. Among the coatings developed, duplex-heat treated-passivated (duplex-HIP) coatings showed lower corrosion current density (i(corr)) and higher polarization resistance (R-p) indicating the improved corrosion resistance. The charge transfer resistance (R-ct) value obtained for the duplex-HIP was about 170 times higher compared to that for Ni P coating. (c) 2013 Elsevier B.V. All rights reserved.
Resumo:
We report a novel, rapid, and low-temperature method for the synthesis of undoped and Eu-doped GdOOH spherical hierarchical structures, without using any structure-directing agents, through the microwave irradiation route. The as-prepared product consists of nearly monodisperse microspheres measuring about 1.3 mu m in diameter. Electron microscopy reveals that each microsphere is an assembly of two-dimensional nanoflakes (about 30 nm thin) which, in turn, result from the assembly of crystallites measuring about 9 nm in diameter. Thus, a three-level hierarchy can be seen in the formation of the GdOOH microspheres: from nanoparticles to 2D nanoflakes to 3D spherical structures. When doped with Eu3+ ions, the GdOOH microspheres show a strong red emission, making them promising candidates as phosphors. Finally, thermal conversion at modest temperatures leads to the formation of corresponding oxide structures with enhanced luminescence, while retaining the spherical morphology of their oxyhydroxide precursor.
Conformal Cytocompatible Ferrite Coatings Facilitate the Realization of a Nanovoyager in Human Blood
Resumo:
Controlled motion of artificial nanomotors in biological environments, such as blood, can lead to fascinating biomedical applications, ranging from targeted drug delivery to microsurgery and many more. In spite of the various strategies used in fabricating and actuating nanomotors, practical issues related to fuel requirement, corrosion, and liquid viscosity have limited the motion of nanomotors to model systems such as water, serum, or biofluids diluted with toxic chemical fuels, such as hydrogen peroxide. As we demonstrate here, integrating conformal ferrite coatings with magnetic nanohelices offer a promising combination of functionalities for having controlled motion in practical biological fluids, such as chemical stability, cytocompatibility, and the generated thrust. These coatings were found to be stable in various biofluids, including human blood, even after overnight incubation, and did not have significant influence on the propulsion efficiency of the magnetically driven nanohelices, thereby facilitating the first successful ``voyage'' of artificial nanomotors in human blood. The motion of the ``nanovoyager'' was found to show interesting stick-slip dynamics, an effect originating in the colloidal jamming of blood cells in the plasma. The system of magnetic ``nanovoyagers'' was found to be cytocompatible with C2C12 mouse myoblast cells, as confirmed using MTT assay and fluorescence microscopy observations of cell morphology. Taken together, the results presented in this work establish the suitability of the ``nanovoyager'' with conformal ferrite coatings toward biomedical applications.
Resumo:
Advanced bus-clamping switching sequences, which employ an active vector twice in a subcycle, are used to reduce line current distortion and switching loss in a space vector modulated voltage source converter. This study evaluates minimum switching loss pulse width modulation (MSLPWM), which is a combination of such sequences, for static reactive power compensator (STATCOM) application. It is shown that MSLPWM results in a significant reduction in device loss over conventional space vector pulse width modulation. Experimental verification is presented at different power levels of up to 150 kVA.
Resumo:
A green colored nano-pigment Y2BaCuO5 with impressive near infra-red (NIR) reflectance (61% at 1100 nm) was synthesized by a nano-emulsion method. The developed nano-crystalline powders were characterized by X-ray diffraction (XRD), Transmission electron microscopy (TEM), UV-vis-NIR diffuse reflectance spectroscopy and CIE-L*a*b* 1976 color scales. The XRD and Rietveld analyses of the designed pigment powders reveal the orthorhombic crystal structure for Y2BaCuO5, where yttrium is coordinated by seven oxygen atoms with the local symmetry of a distorted trigonal prism, barium is coordinated by eleven oxygen atoms, and the coordination polyhedron of copper is a distorted square pyramid CuO5]. The UV-vis spectrum of the nano-pigment exhibits an intense d-d transition associated with CuO5 chromophore between 2.1 and 2.5 eV in the visible domain. Therefore, a green color has been displayed by the developed nano-pigment. The potential utility of the nano-pigments as ``Cool Pigments'' was demonstrated by coating on to a building roofing material like cement slab and PVC coatings. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
The phosphorescence intensity of unilamellar DOPC vesicles with embedded Tb3+-cholate complexes depends on the concentration of dihydroxynaphthalene (DHN) as sensitizer in solution. This was used to monitor the enzymatic conversion of DHN esters or DHN glucosides by enzymes in aqueous buffered solution.
Resumo:
In the present work, morphology, microstructure, and electrochemical behavior of Zn coatings containing non-toxic additives have been investigated. Zn coatings were electrodeposited over mild steel substrates using Zn sulphate baths containing four different organic additives: sodium gluconate, dextrose, dextrin, and saccharin. All these additives are ``green'' and can be derived from food contents. Morphological and structural characterization using electron microscopy, x-ray diffraction, and texture co-efficient analysis revealed an appreciable alteration in the morphology and texture of the deposit depending on the type of additive used in the Zn plating bath. All the Zn coatings, however, were nano-crystalline irrespective of the type of additive used. Polarization and electrochemical impedance spectroscopic analysis, used to investigate the effect of the change in microstructure and morphology on corrosion resistance behavior, illustrated an improved corrosion resistance for Zn deposits obtained from plating bath containing additives as compared to the pure Zn coatings.
Resumo:
Manipulation of matter at the nanoscale is a way forward to move beyond our current choices in electrochemical energy storage and conversion technologies with promise of higher efficiency, environmental benignity, and cost-effectiveness. Electrochemical processes being basically surface phenomena, tailored multifunctional nanoarchitecturing can lead to improvements in terms of electronic and ionic conductivities, diffusion and mass transport, and electron transfer and electrocatalysis. The nanoscale is also a domain in which queer properties surface: those associated with conversion electrodes, ceramic particles enhancing the conductivity of polymer electrolytes, and transition metal oxide powders catalyzing fuel cell reactions, to cite a few. Although this review attempts to present a bird's eye view of the vast literature that has accumulated in this rather infant field, it also lists a few representative studies that establish the beneficial effects of going `nano'. Investigations on nanostructuring and use of nanoparticles and nanoarchitectures related to lithium-ion batteries (active materials and electrolytes), supercapacitors (electrical double-layer capacitors, supercapacitors based on pseudo-capacitance, and hybrid supercapacitors), and fuel cells (electrocatalysts, membranes and hydrogen storage materials) are highlighted. (C) 2012 John Wiley & Sons, Ltd.
Resumo:
Thermally induced demixing in an LCST mixture, polystyrene (PS)/polyvinyl methyl ether] (PVME), was used as a template to design materials with high electrical conductivity. This was facilitated by gelation of multiwall carbon nanotubes (MWNTs) in a given phase of the blends. The MWNTs were mixed in the miscible blends and the thermodynamic driven demixing further resulted in selective localization in the PVME phase of the blends. This was further confirmed by atomic force microscopy (AFM). The time dependent gelation of MWNTs at shallow quench depth, evaluated using isochronal temperature sweep by rheology, was studied by monitoring the melt electrical conductivity of the samples in situ by an LCR meter coupled to a rheometer. By varying the composition in the mixture, several intricate shapes like gaskets and also coatings capable of attenuating the EM radiation in the microwave frequency can be derived. For instance, the PVME rich mixtures can be molded in the form of a gasket, O-ring and other intricate shapes while the PS rich mixtures can be coated onto an insulating polymer to enhance the shielding effectiveness (SE) for EM radiation. The SE of the various materials was analyzed using a vector network analyzer in both the X-band (8.2 to 12 GHz) and the K-u-band (12 to 18 GHz) frequency. The improved SE upon gelation of MWNTs in the demixed blends is well evident by comparing the SE before and after demixing. A reflection loss of -35 dB was observed in the blends with 2 wt% MWNTs. Further, by coating a layer of ca. 0.15 mm of PS/PVME/MWNT, a SE of -15 dB at 18 GHz could be obtained.
Resumo:
A chemically-induced nanorod to quantum dot transition is reported in ZnO. This transition is achieved using co-surfactants in a marginally polar solvent in chimie douce (soft chemical) conditions. This is different from the physical instability driven transitions reported so far in metal nanowires and polymers. We propose a suitable mechanism for the observed phenomenon.