934 resultados para COMPUTER-AIDED DIAGNOSIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

More than ever, there is an increase of the number of decision support methods and computer aided diagnostic systems applied to various areas of medicine. In breast cancer research, many works have been done in order to reduce false-positives when used as a double reading method. In this study, we aimed to present a set of data mining techniques that were applied to approach a decision support system in the area of breast cancer diagnosis. This method is geared to assist clinical practice in identifying mammographic findings such as microcalcifications, masses and even normal tissues, in order to avoid misdiagnosis. In this work a reliable database was used, with 410 images from about 115 patients, containing previous reviews performed by radiologists as microcalcifications, masses and also normal tissue findings. Throughout this work, two feature extraction techniques were used: the gray level co-occurrence matrix and the gray level run length matrix. For classification purposes, we considered various scenarios according to different distinct patterns of injuries and several classifiers in order to distinguish the best performance in each case described. The many classifiers used were Naïve Bayes, Support Vector Machines, k-nearest Neighbors and Decision Trees (J48 and Random Forests). The results in distinguishing mammographic findings revealed great percentages of PPV and very good accuracy values. Furthermore, it also presented other related results of classification of breast density and BI-RADS® scale. The best predictive method found for all tested groups was the Random Forest classifier, and the best performance has been achieved through the distinction of microcalcifications. The conclusions based on the several tested scenarios represent a new perspective in breast cancer diagnosis using data mining techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultrasound imaging is widely used in medical diagnostics as it is the fastest, least invasive, and least expensive imaging modality. However, ultrasound images are intrinsically difficult to be interpreted. In this scenario, Computer Aided Detection (CAD) systems can be used to support physicians during diagnosis providing them a second opinion. This thesis discusses efficient ultrasound processing techniques for computer aided medical diagnostics, focusing on two major topics: (i) Ultrasound Tissue Characterization (UTC), aimed at characterizing and differentiating between healthy and diseased tissue; (ii) Ultrasound Image Segmentation (UIS), aimed at detecting the boundaries of anatomical structures to automatically measure organ dimensions and compute clinically relevant functional indices. Research on UTC produced a CAD tool for Prostate Cancer detection to improve the biopsy protocol. In particular, this thesis contributes with: (i) the development of a robust classification system; (ii) the exploitation of parallel computing on GPU for real-time performance; (iii) the introduction of both an innovative Semi-Supervised Learning algorithm and a novel supervised/semi-supervised learning scheme for CAD system training that improve system performance reducing data collection effort and avoiding collected data wasting. The tool provides physicians a risk map highlighting suspect tissue areas, allowing them to perform a lesion-directed biopsy. Clinical validation demonstrated the system validity as a diagnostic support tool and its effectiveness at reducing the number of biopsy cores requested for an accurate diagnosis. For UIS the research developed a heart disease diagnostic tool based on Real-Time 3D Echocardiography. Thesis contributions to this application are: (i) the development of an automated GPU based level-set segmentation framework for 3D images; (ii) the application of this framework to the myocardium segmentation. Experimental results showed the high efficiency and flexibility of the proposed framework. Its effectiveness as a tool for quantitative analysis of 3D cardiac morphology and function was demonstrated through clinical validation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A good and early fault detection and isolation system along with efficient alarm management and fine sensor validation systems are very important in today¿s complex process plants, specially in terms of safety enhancement and costs reduction. This paper presents a methodology for fault characterization. This is a self-learning approach developed in two phases. An initial, learning phase, where the simulation of process units, without and with different faults, will let the system (in an automated way) to detect the key variables that characterize the faults. This will be used in a second (on line) phase, where these key variables will be monitored in order to diagnose possible faults. Using this scheme the faults will be diagnosed and isolated in an early stage where the fault still has not turned into a failure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Operators can become confused while diagnosing faults in process plant while in operation. This may prevent remedial actions being taken before hazardous consequences can occur. The work in this thesis proposes a method to aid plant operators in systematically finding the causes of any fault in the process plant. A computer aided fault diagnosis package has been developed for use on the widely available IBM PC compatible microcomputer. The program displays a coloured diagram of a fault tree on the VDU of the microcomputer, so that the operator can see the link between the fault and its causes. The consequences of the fault and the causes of the fault are also shown to provide a warning of what may happen if the fault is not remedied. The cause and effect data needed by the package are obtained from a hazard and operability (HAZOP) study on the process plant. The result of the HAZOP study is recorded as cause and symptom equations which are translated into a data structure and stored in the computer as a file for the package to access. Probability values are assigned to the events that constitute the basic causes of any deviation. From these probability values, the a priori probabilities of occurrence of other events are evaluated. A top-down recursive algorithm, called TDRA, for evaluating the probability of every event in a fault tree has been developed. From the a priori probabilities, the conditional probabilities of the causes of the fault are then evaluated using Bayes' conditional probability theorem. The posteriori probability values could then be used by the operators to check in an orderly manner the cause of the fault. The package has been tested using the results of a HAZOP study on a pilot distillation plant. The results from the test show how easy it is to trace the chain of events that leads to the primary cause of a fault. This method could be applied in a real process environment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Multispectral widefield optical imaging has the potential to improve early detection of oral cancer. The appropriate selection of illumination and collection conditions is required to maximize diagnostic ability. The goals of this study were to (i) evaluate image contrast between oral cancer/precancer and non-neoplastic mucosa for a variety of imaging modalities and illumination/collection conditions, and (ii) use classification algorithms to evaluate and compare the diagnostic utility of these modalities to discriminate cancers and precancers from normal tissue. Narrowband reflectance, autofluorescence, and polarized reflectance images were obtained from 61 patients and 11 normal volunteers. Image contrast was compared to identify modalities and conditions yielding greatest contrast. Image features were extracted and used to train and evaluate classification algorithms to discriminate tissue as non-neoplastic, dysplastic, or cancer; results were compared to histologic diagnosis. Autofluorescence imaging at 405-nm excitation provided the greatest image contrast, and the ratio of red-to-green fluorescence intensity computed from these images provided the best classification of dysplasia/cancer versus non-neoplastic tissue. A sensitivity of 100% and a specificity of 85% were achieved in the validation set. Multispectral widefield images can accurately distinguish neoplastic and non-neoplastic tissue; however, the ability to separate precancerous lesions from cancers with this technique was limited. (C) 2010 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3516593]

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dissertation to obtain the degree of Master in Electrical and Computer Engineering

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: The DNA repair protein O6-Methylguanine-DNA methyltransferase (MGMT) confers resistance to alkylating agents. Several methods have been applied to its analysis, with methylation-specific polymerase chain reaction (MSP) the most commonly used for promoter methylation study, while immunohistochemistry (IHC) has become the most frequently used for the detection of MGMT protein expression. Agreement on the best and most reliable technique for evaluating MGMT status remains unsettled. The aim of this study was to perform a systematic review and meta-analysis of the correlation between IHC and MSP. Methods A computer-aided search of MEDLINE (1950-October 2009), EBSCO (1966-October 2009) and EMBASE (1974-October 2009) was performed for relevant publications. Studies meeting inclusion criteria were those comparing MGMT protein expression by IHC with MGMT promoter methylation by MSP in the same cohort of patients. Methodological quality was assessed by using the QUADAS and STARD instruments. Previously published guidelines were followed for meta-analysis performance. Results Of 254 studies identified as eligible for full-text review, 52 (20.5%) met the inclusion criteria. The review showed that results of MGMT protein expression by IHC are not in close agreement with those obtained with MSP. Moreover, type of tumour (primary brain tumour vs others) was an independent covariate of accuracy estimates in the meta-regression analysis beyond the cut-off value. Conclusions Protein expression assessed by IHC alone fails to reflect the promoter methylation status of MGMT. Thus, in attempts at clinical diagnosis the two methods seem to select different groups of patients and should not be used interchangeably.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Modern organisms are adapted to a wide variety of habitats and lifestyles. The processes of evolution have led to complex, interdependent, well-designed mechanisms of todays world and this research challenge is to transpose these innovative solutions to resolve problems in the context of architectural design practice, e.g., to relate design by nature with design by human. In a design by human environment, design synthesis can be performed with the use of rapid prototyping techniques that will enable to transform almost instantaneously any 2D design representation into a physical three-dimensional model, through a rapid prototyping printer machine. Rapid prototyping processes add layers of material one on top of another until a complete model is built and an analogy can be established with design by nature where the natural lay down of earth layers shapes the earth surface, a natural process occurring repeatedly over long periods of time. Concurrence in design will particularly benefit from rapid prototyping techniques, as the prime purpose of physical prototyping is to promptly assist iterative design, enabling design participants to work with a three-dimensional hardcopy and use it for the validation of their design-ideas. Concurrent design is a systematic approach aiming to facilitate the simultaneous involvment and commitment of all participants in the building design process, enabling both an effective reduction of time and costs at the design phase and a quality improvement of the design product. This paper presents the results of an exploratory survey investigating both how computer-aided design systems help designers to fully define the shape of their design-ideas and the extent of the application of rapid prototyping technologies coupled with Internet facilities by design practice. The findings suggest that design practitioners recognize that these technologies can greatly enhance concurrence in design, though acknowledging a lack of knowledge in relation to the issue of rapid prototyping.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A vision system for recognizing rigid and articulated three-dimensional objects in two-dimensional images is described. Geometrical models are extracted from a commercial computer aided design package. The models are then augmented with appearance and functional information which improves the system's hypothesis generation, hypothesis verification, and pose refinement. Significant advantages over existing CAD-based vision systems, which utilize only information available in the CAD system, are realized. Examples show the system recognizing, locating, and tracking a variety of objects in a robot work-cell and in natural scenes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This research presents a novel multi-functional system for medical Imaging-enabled Assistive Diagnosis (IAD). Although the IAD demonstrator has focused on abdominal images and supports the clinical diagnosis of kidneys using CT/MRI imaging, it can be adapted to work on image delineation, annotation and 3D real-size volumetric modelling of other organ structures such as the brain, spine, etc. The IAD provides advanced real-time 3D visualisation and measurements with fully automated functionalities as developed in two stages. In the first stage, via the clinically driven user interface, specialist clinicians use CT/MRI imaging datasets to accurately delineate and annotate the kidneys and their possible abnormalities, thus creating “3D Golden Standard Models”. Based on these models, in the second stage, clinical support staff i.e. medical technicians interactively define model-based rules and parameters for the integrated “Automatic Recognition Framework” to achieve results which are closest to that of the clinicians. These specific rules and parameters are stored in “Templates” and can later be used by any clinician to automatically identify organ structures i.e. kidneys and their possible abnormalities. The system also supports the transmission of these “Templates” to another expert for a second opinion. A 3D model of the body, the organs and their possible pathology with real metrics is also integrated. The automatic functionality was tested on eleven MRI datasets (comprising of 286 images) and the 3D models were validated by comparing them with the metrics from the corresponding “3D Golden Standard Models”. The system provides metrics for the evaluation of the results, in terms of Accuracy, Precision, Sensitivity, Specificity and Dice Similarity Coefficient (DSC) so as to enable benchmarking of its performance. The first IAD prototype has produced promising results as its performance accuracy based on the most widely deployed evaluation metric, DSC, yields 97% for the recognition of kidneys and 96% for their abnormalities; whilst across all the above evaluation metrics its performance ranges between 96% and 100%. Further development of the IAD system is in progress to extend and evaluate its clinical diagnostic support capability through development and integration of additional algorithms to offer fully computer-aided identification of other organs and their abnormalities based on CT/MRI/Ultra-sound Imaging.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper reports an expert system (SISTEMAT) developed for structural determination of diverse chemical classes of natural products, including lignans, based mainly on 13C NMR and 1H NMR data of these compounds. The system is composed of five programs that analyze specific data of a lignan and shows a skeleton probability for the compound. At the end of analyses, the results are grouped, the global probability is computed, and the most probable skeleton is exhibited to the user. SISTEMAT was able to properly predict the skeletons of 80% of the 30 lignans tested, demonstrating its advantage during the structural elucidation course in a short period of time.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The vision is one of the five senses of the human body and, in children is responsible for up to 80% of the perception of world around. Studies show that 50% of children with multiple disabilities have some visual impairment, and 4% of all children are diagnosed with strabismus. The strabismus is an eye disability associated with handling capacity of the eye, defined as any deviation from perfect ocular alignment. Besides of aesthetic aspect, the child may report blurred or double vision . Ophthalmological cases not diagnosed correctly are reasons for many school abandonments. The Ministry of Education of Brazil points to the visually impaired as a challenge to the educators of children, particularly in literacy process. The traditional eye examination for diagnosis of strabismus can be accomplished by inducing the eye movements through the doctor s instructions to the patient. This procedure can be played through the computer aided analysis of images captured on video. This paper presents a proposal for distributed system to assist health professionals in remote diagnosis of visual impairment associated with motor abilities of the eye, such as strabismus. It is hoped through this proposal to contribute improving the rates of school learning for children, allowing better diagnosis and, consequently, the student accompaniment

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The knowledge of cell-cycle control has shown that the capacity of malignant growth is acquired by the stepwise accumulation of defects in specific genes regulating cell growth. Histologic diagnosis might be improved by a quantitative evaluation of more specific diagnosis biomarkers, which could help to precisely identify pre-malignant and malignant oral lesions. The aim of the present study is to evaluate whether computer-based quantitative assessment of p53, PCNA and Ki-67 immunohistochemical expression, could be used clinically to foresee the risk of oral malignant transformation. This retrospective study was carried out in ninety-five oral biopsies, 27 were classified as fibrous inflammatory hyperplasia, 40 as leukoplakia and 28 as oral squamous cell carcinoma. Sixteen out of the 40 leukoplakia were diagnosed as non-dysplastic leukoplakia, the other 24 being dysplastic leukoplakia, of which 50.0% were classified as moderate to severe dysplasia. Comparison of the four groups of oral tissues showed significant rises in p53 and Ki-67 positivity index, which increased steadily in the order benign, pre-malignant, and malignant. In contrast, it was not possible to relate higher PCNA levels with pre-malignant and malignant oral lesions. We therefore conclude that PCNA immunohistochemistry expression is probably an inappropriate marker to identify oral carcinogenesis, whereas joint quantitative evaluation of p53 and Ki-67, appears to be useful as a tumor marker, providing a pre-diagnostic estimate of the potential for cell-cycle deregulation of the oral proliferate status.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)