211 resultados para COMBINATORICS


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Necessary conditions for the complete graph on n vertices to have a decomposition into 5-cubes are that 5 divides it - 1 and 80 divides it (it - 1)/2. These are known to be sufficient when n is odd. We prove them also sufficient for it even, thus completing the spectrum problem for the 5-cube and lending further weight to a long-standing conjecture of Kotzig. (c) 2005 Wiley Periodicals, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Let G be a graph in which each vertex has been coloured using one of k colours, say c(1), c(2),..., c(k). If an m-cycle C in G has x(i) vertices coloured c(i), i = 1, 2,..., k, and vertical bar x(i) - x(j)vertical bar

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is shown that there exists a triangle decomposition of the graph obtained from the complete graph of order v by removing the edges of two vertex disjoint complete subgraphs of orders u and w if and only if u, w, and v are odd, ((v)(2)) - ((u)(2)) - ((w)(2)) equivalent to 0 (mod 3), and v >= w + u + max {u, w}. Such decompositions are equivalent to group divisible designs with block size 3, one group of size u, one group of size w, and v - u - w groups of size 1. This result settles the existence problem for Steiner triple systems having two disjoint specified subsystems, thereby generalizing the well-known theorem of Doyen and Wilson on the existence of Steiner triple systems with a single specified subsystem. (c) 2005 Wiley Periodicals, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A class of algebras forms a variety if it is characterised by a collection of identities. There is a well-known method, often called the standard construction, which gives rise to algebras from m-cycle systems. It is known that the algebras arising from {1}-perfect m-cycle systems form a variety for m is an element of {3, 5} only, and that the algebras arising from {1, 2}-perfect m-cycle systems form a variety for m is an element of {3, 5, 7} only. Here we give, for any set K of positive integers, necessary and sufficient conditions under which the algebras arising from K-perfect m-cycle systems form a variety. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is shown that in some cases it is possible to reconstruct a block design D uniquely from incomplete knowledge of a minimal defining set for D. This surprising result has implications for the use of minimal defining sets in secret sharing schemes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The maximum possible volume of a simple, non-Steiner (v, 3, 2) trade was determined for all v by Xhosrovshahi and Torabi (Ars Combinatoria 51 (1999), 211-223), except that in the-case v equivalent to 5 (mod 6), v >= 23, they were only able to provide an upper, bound on the volume. In this paper we construct trades with volume equal to that bound for all v equivalent to 5 (mod 6), thus completing the problem.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An edge-colored graph is a graph H together with a function f:E(H) → C where C is a set of colors. Given an edge-colored graph H, the graph induced by the edges of color c C is denoted by H(c). Let G, H, and J be graphs and let μ be a positive integer. A (J, H, G, μ) edge-colored graph decomposition is a set S = {H 1,H 2,...,H t} of edge-colored graphs with color set C = {c 1, c 2,..., c k} such that Hi ≅ H for 1 ≤ i ≤ t; Hi (cj) ≅ G for 1 ≤ i ≤ t and ≤ j ≤ k; and for j = 1, 2,..., k, each edge of J occurs in exactly μ of the graphs H 1(c j ), H 2(c j ),..., H t (c j ). Let Q 3 denote the 3-dimensional cube. In this paper, we find necessary and sufficient conditions on n, μ and G for the existence of a (K n ,Q 3,G, μ) edge-colored graph decomposition. © Birkhäuser Verlag, Basel 2007.

Relevância:

10.00% 10.00%

Publicador: