964 resultados para COLOR CONFINEMENT
Resumo:
UANL
Resumo:
UANL
Resumo:
UANL
Resumo:
Tesis (Doctorado en Ciencias con Especialidad en Biotecnología) UANL
Resumo:
Les plantes envahissantes menacent la biodiversité ainsi que les activités humaines. Afin de les maîtriser, la pulvérisation d'herbicides est une méthode fréquemment employée en Amérique du Nord. Cette approche ne fait pas toujours consensus et est même parfois interdite ou restreinte, ce qui justifie le recours à d'autres options. Les alternatives peuvent toutefois s'avérer rares, comporter d'importantes limitations ou sont peu documentées. Cette étude vise à tester l’efficacité de méthodes permettant de maîtriser et de prévenir les invasions de roseau commun (Phragmites australis), l'une des plantes envahissantes les plus problématiques sur le continent nord-américain, tout en limitant au minimum l'utilisation d'herbicides. Le potentiel de quatre méthodes de lutte aux petites populations de roseau bien établies a d'abord été évalué : l’excavation avec enfouissement sur place, le bâchage, l’excavation avec enfouissement sur place combinée au bâchage, et la fauche répétée. Les résultats ont montré que l'excavation avec enfouissement sur place, avec ou sans bâchage, a entraîné une élimination presque totale des populations visées, ce qui est comparable ou supérieur à l'effet généralement obtenu avec la pulvérisation d'herbicide. Le bâchage avec des toiles opaques, maintenues pendant un an, a pour sa part entraîné une maîtrise partielle du roseau, suggérant qu'une application prolongée serait nécessaire pour l'éradication de la plante. La fauche répétée, exécutée à raison de cinq fauches par été pendant deux ans, a fourni une efficacité mitigée. Les résultats suggèrent néanmoins que la fauche pendant plusieurs années contribue à affaiblir la plante, ce qui pourrait aider à son confinement. Une méthode additionnelle a été expérimentée afin de traiter les tiges éparses de roseau tout en limitant les risques d'effets hors cibles, soit le badigeonnage manuel d’herbicide. Suite à ces tests, les résultats ont montré une diminution importante de la densité des tiges, ce qui suggère que la méthode est efficace afin d'éliminer les repousses après un traitement initial, et pourrait également être employée sur de jeunes populations clairsemées. L'effet d'un ensemencement préventif de plantes herbacées sur l'établissement de semis de roseau a également été étudié, suite à des traitements sur de vastes parcelles de sol nu. Les résultats suggèrent que la méthode est efficace afin de limiter la propagation du roseau par semences et qu'un suivi périodique suite à l'intervention serait suffisant afin de maintenir l'effet préventif.
Resumo:
The dynamics of plasma plume, formed by the laser-blow-off of multicomponent LiF-C thin film under various ambient pressures ranging from high vacuum to argon pressure of 3 Torr, has been studied using fast imaging technique. In vacuum, the plume has ellipsoidal shape. With the increase in the ambient pressure, sharp plume boundary is developed showing a focusing-like confinement in the lateral space behavior in the front end, which persists for long times. At higher ambient pressure (> 10−1 Torr ), structures are developed in the plasma plume due to hydrodynamic instability/turbulences.
Resumo:
We describe the structure of luminescence spectrum in the visible region in nano-ZnO in colloidal and thin film forms under weak confinement regime by modeling the transition from excited state energy levels of excitons to their ground state. Measurements on nanocrystallites indicate the presence of luminescence due to excitonic emissions when excited with 255 nm. The relevant energy levels showing the transitions corresponding to the observed peaks in the emission spectrum of ZnO of particle size 18 nm are identified.
Resumo:
Department of Physics, Cochin University of Science & Technology
Resumo:
Superparamagnetic nanocomposites based on Y-Fe2O3 and sulphonated polystyrene were synthesised by ion-exchange process and the structural characterisation has been carried out using X-ray diffraction technique. Doping of cobalt in to the Y-Fe2O3 lattice was effected in situ and the doping was varied in the atomic percentage range 1–10. The optical absorption studies show a band gap of 2.84 eV, which is blue shifted by 0.64 eV when compared to the reported values for the bulk samples (2.2 eV). This is explained on the basis of weak quantum confinement. Further size reduction can result in a strong confinement, which can yield transparent magnetic nanocomposites because of further blue shifting. The band gap gets red shifted further with the addition of cobalt in the lattice and this red shift increases with the increase in doping. The observed red shift can be attributed to the strain in the lattice caused by the anisotropy induced by the addition of cobalt. Thus, tuning of bandgap and blue shifting is aided by weak exciton confinement and further red shifting of the bandgap is assisted by cobalt doping.
Resumo:
An improved color video super-resolution technique using kernel regression and fuzzy enhancement is presented in this paper. A high resolution frame is computed from a set of low resolution video frames by kernel regression using an adaptive Gaussian kernel. A fuzzy smoothing filter is proposed to enhance the regression output. The proposed technique is a low cost software solution to resolution enhancement of color video in multimedia applications. The performance of the proposed technique is evaluated using several color videos and it is found to be better than other techniques in producing high quality high resolution color videos
Resumo:
Efficient optic disc segmentation is an important task in automated retinal screening. For the same reason optic disc detection is fundamental for medical references and is important for the retinal image analysis application. The most difficult problem of optic disc extraction is to locate the region of interest. Moreover it is a time consuming task. This paper tries to overcome this barrier by presenting an automated method for optic disc boundary extraction using Fuzzy C Means combined with thresholding. The discs determined by the new method agree relatively well with those determined by the experts. The present method has been validated on a data set of 110 colour fundus images from DRION database, and has obtained promising results. The performance of the system is evaluated using the difference in horizontal and vertical diameters of the obtained disc boundary and that of the ground truth obtained from two expert ophthalmologists. For the 25 test images selected from the 110 colour fundus images, the Pearson correlation of the ground truth diameters with the detected diameters by the new method are 0.946 and 0.958 and, 0.94 and 0.974 respectively. From the scatter plot, it is shown that the ground truth and detected diameters have a high positive correlation. This computerized analysis of optic disc is very useful for the diagnosis of retinal diseases
Resumo:
The present Thesis looks at the problem of protein folding using Monte Carlo and Langevin simulations, three topics in protein folding have been studied: 1) the effect of confining potential barriers, 2) the effect of a static external field and 3) the design of amino acid sequences which fold in a short time and which have a stable native state (global minimum). Regarding the first topic, we studied the confinement of a small protein of 16 amino acids known as 1NJ0 (PDB code) which has a beta-sheet structure as a native state. The confinement of proteins occurs frequently in the cell environment. Some molecules called Chaperones, present in the cytoplasm, capture the unfolded proteins in their interior and avoid the formation of aggregates and misfolded proteins. This mechanism of confinement mediated by Chaperones is not yet well understood. In the present work we considered two kinds of potential barriers which try to mimic the confinement induced by a Chaperon molecule. The first kind of potential was a purely repulsive barrier whose only effect is to create a cavity where the protein folds up correctly. The second kind of potential was a barrier which includes both attractive and repulsive effects. We performed Wang-Landau simulations to calculate the thermodynamical properties of 1NJ0. From the free energy landscape plot we found that 1NJ0 has two intermediate states in the bulk (without confinement) which are clearly separated from the native and the unfolded states. For the case of the purely repulsive barrier we found that the intermediate states get closer to each other in the free energy landscape plot and eventually they collapse into a single intermediate state. The unfolded state is more compact, compared to that in the bulk, as the size of the barrier decreases. For an attractive barrier modifications of the states (native, unfolded and intermediates) are observed depending on the degree of attraction between the protein and the walls of the barrier. The strength of the attraction is measured by the parameter $\epsilon$. A purely repulsive barrier is obtained for $\epsilon=0$ and a purely attractive barrier for $\epsilon=1$. The states are changed slightly for magnitudes of the attraction up to $\epsilon=0.4$. The disappearance of the intermediate states of 1NJ0 is already observed for $\epsilon =0.6$. A very high attractive barrier ($\epsilon \sim 1.0$) produces a completely denatured state. In the second topic of this Thesis we dealt with the interaction of a protein with an external electric field. We demonstrated by means of computer simulations, specifically by using the Wang-Landau algorithm, that the folded, unfolded, and intermediate states can be modified by means of a field. We have found that an external field can induce several modifications in the thermodynamics of these states: for relatively low magnitudes of the field ($<2.06 \times 10^8$ V/m) no major changes in the states are observed. However, for higher magnitudes than ($6.19 \times 10^8$ V/m) one observes the appearance of a new native state which exhibits a helix-like structure. In contrast, the original native state is a $\beta$-sheet structure. In the new native state all the dipoles in the backbone structure are aligned parallel to the field. The design of amino acid sequences constitutes the third topic of the present work. We have tested the Rate of Convergence criterion proposed by D. Gridnev and M. Garcia ({\it work unpublished}). We applied it to the study of off-lattice models. The Rate of Convergence criterion is used to decide if a certain sequence will fold up correctly within a relatively short time. Before the present work, the common way to decide if a certain sequence was a good/bad folder was by performing the whole dynamics until the sequence got its native state (if it existed), or by studying the curvature of the potential energy surface. There are some difficulties in the last two approaches. In the first approach, performing the complete dynamics for hundreds of sequences is a rather challenging task because of the CPU time needed. In the second approach, calculating the curvature of the potential energy surface is possible only for very smooth surfaces. The Rate of Convergence criterion seems to avoid the previous difficulties. With this criterion one does not need to perform the complete dynamics to find the good and bad sequences. Also, the criterion does not depend on the kind of force field used and therefore it can be used even for very rugged energy surfaces.
Resumo:
Crear situaciones de aprendizaje significativas y funcionales para el alumnado de Infantil a través del acercamiento al mundo del arte, teniendo como centros de interés pintores andaluces y universales.
Resumo:
This thesis takes an interdisciplinary approach to the study of color vision, focussing on the phenomenon of color constancy formulated as a computational problem. The primary contributions of the thesis are (1) the demonstration of a formal framework for lightness algorithms; (2) the derivation of a new lightness algorithm based on regularization theory; (3) the synthesis of an adaptive lightness algorithm using "learning" techniques; (4) the development of an image segmentation algorithm that uses luminance and color information to mark material boundaries; and (5) an experimental investigation into the cues that human observers use to judge the color of the illuminant. Other computational approaches to color are reviewed and some of their links to psychophysics and physiology are explored.
Resumo:
Surface (Lambertain) color is a useful visual cue for analyzing material composition of scenes. This thesis adopts a signal processing approach to color vision. It represents color images as fields of 3D vectors, from which we extract region and boundary information. The first problem we face is one of secondary imaging effects that makes image color different from surface color. We demonstrate a simple but effective polarization based technique that corrects for these effects. We then propose a systematic approach of scalarizing color, that allows us to augment classical image processing tools and concepts for multi-dimensional color signals.