200 resultados para CMA
Resumo:
Muchos de los proyectos de ayuda al desarrollo han fracasado por fallas en su diseño y ejecución, puesto que al no involucrar a los beneficiarios en estas etapas del proyecto, tienen pocas posibilidades de ser sostenibles en el tiempo. La Universidad Politécnica de Madrid (UPM) y La Coordinadora de Mujeres Aymaras (CMA) están desarrollando un proyecto en la región Puno (Perú), en donde aplicando los lineamientos del Aprendizaje social en la planificación y ejecución de proyectos, junto con las competencias de Dirección de Proyectos, plantean la sostenibilidad de proyectos a través de la participación de los beneficiarios, en todas las etapas del proyecto. Identificando nuevos caminos al conjugar conocimientos y experiencias que dan lugar a un conocimiento más cercano a la realidad. Fortaleciendo una institución que comienza como una agrupación, para luego formar una asociación civil, que se transforma en una entidad empresarial que a través del aprendizaje mutuo puede consolidar una organización empresarial que no solo trasciende su rama productiva, sino que se vuelve en un punto de soporte para la recuperación de la actividad turística de la localidad. Articulando el esfuerzo de empresas, instituciones públicas, beneficiarios e instituciones de desarrollo en un modelo de desarrollo territorial incipiente
Resumo:
We propose the use of a highly-accurate three-dimensional (3D) fully automatic hp-adaptive finite element method (FEM) for the characterization of rectangular waveguide discontinuities. These discontinuities are either the unavoidable result of mechanical/electrical transitions or deliberately introduced in order to perform certain electrical functions in modern communication systems. The proposed numerical method combines the geometrical flexibility of finite elements with an accuracy that is often superior to that provided by semi-analytical methods. It supports anisotropic refinements on irregular meshes with hanging nodes, and isoparametric elements. It makes use of hexahedral elements compatible with high-order H(curl)H(curl) discretizations. The 3D hp-adaptive FEM is applied for the first time to solve a wide range of 3D waveguide discontinuity problems of microwave communication systems in which exponential convergence of the error is observed.
Resumo:
A unified solution framework is presented for one-, two- or three-dimensional complex non-symmetric eigenvalue problems, respectively governing linear modal instability of incompressible fluid flows in rectangular domains having two, one or no homogeneous spatial directions. The solution algorithm is based on subspace iteration in which the spatial discretization matrix is formed, stored and inverted serially. Results delivered by spectral collocation based on the Chebyshev-Gauss-Lobatto (CGL) points and a suite of high-order finite-difference methods comprising the previously employed for this type of work Dispersion-Relation-Preserving (DRP) and Padé finite-difference schemes, as well as the Summationby- parts (SBP) and the new high-order finite-difference scheme of order q (FD-q) have been compared from the point of view of accuracy and efficiency in standard validation cases of temporal local and BiGlobal linear instability. The FD-q method has been found to significantly outperform all other finite difference schemes in solving classic linear local, BiGlobal, and TriGlobal eigenvalue problems, as regards both memory and CPU time requirements. Results shown in the present study disprove the paradigm that spectral methods are superior to finite difference methods in terms of computational cost, at equal accuracy, FD-q spatial discretization delivering a speedup of ð (10 4). Consequently, accurate solutions of the three-dimensional (TriGlobal) eigenvalue problems may be solved on typical desktop computers with modest computational effort.
Resumo:
We consider a mathematical model related to the stationary regime of a plasma magnetically confined in a Stellarator device in the nuclear fusion. The mathematical problem may be reduced to an nonlinear elliptic inverse nonlocal two dimensional free{boundary problem. The nonlinear terms involving the unknown functions of the problem and its rearrangement. Our main goal is to determinate the existence and the estimate on the location and size of region where the solution is nonnegative almost everywhere (corresponding to the plasma region in the physical model)