811 resultados para CFRP (Carbon Fibre Reinforced Polymer)
Resumo:
This study investigates the effect of foam core density and skin type on the behaviour of sandwich panels as structural beams tested in four-point bending and axially compressed columns of varying slenderness and skin thickness. Bio-composite unidirectional flax fibre-reinforced polymer (FFRP) is compared to conventional glass-FRP (GFRP) as the skin material used in conjunction with three polyisocyanurate (PIR) foam cores with densities of 32, 64 and 96 kg/m3. Eighteen 1000 mm long flexural specimens were fabricated and tested to failure comparing the effects of foam core density between three-layer FFRP skinned and single-layer GFRP skinned panels. A total of 132 columns with slenderness ratios (kLe/r) ranging from 22 to 62 were fabricated with single-layer GFRP skins, and one-, three-, and five-layer FFRP skins for each of the three foam core densities. The columns were tested to failure in concentric axial compression using pinned-end conditions to compare the effects of each material type and panel height. All specimens had a foam core cross-section of 100x50 mm with 100 mm wide skins of equal thickness. In both flexural and axial loading, panels with skins comprised of three FFRP layers showed equivalent strength to those with a single GFRP layer for all slenderness ratios and core densities examined. Doubling the core density from 32 to 64 kg/m3 and tripling the density to 96 kg/m3 led to flexural strength increases of 82 and 213%, respectively. Both FFRP and GFRP columns showed a similar variety of failure modes related to slenderness. Low slenderness of 22-25 failed largely due to localized single skin buckling, while those with high slenderness of 51-61 failed primarily by global buckling followed by secondary skin buckling. Columns with intermediate slenderness experienced both localized and global failure modes. High density foam cores more commonly exhibited core shear failure. Doubling the core density of the columns resulted in peak axial load increases, across all slenderness ratios, of 73, 56, 72 and 71% for skins with one, three and five FFRP layers, and one GFRP layer, respectively. Tripling the core density resulted in respective peak load increases of 116, 130, 176 and 170%.
Resumo:
Using prestressed near surface mounted fibre reinforced polymers (NSM-FRP) is nowadays regaining the attention from the scientific community for the strengthening of existing reinforced concrete (RC) structures. The application of prestressed internal FRP bars and externally bonded prestressed FRPs has already been deeply investigated and revealed considerable benefits when compared to the corresponding passive solutions. A certain amount of prestress provides benefits mainly associated to structural integrity and material durability. Immediately after prestress transference, it is possible to close some of the existing cracks, decreasing the susceptibility of the element to corrosion and, a certain amount of deflection can be recovered due to the creation of a negative curvature. However, very few studies have been carried out to properly assess the preservation of prestress over time. In this context, several reinforced concrete beams strengthened with prestressed NSM carbon FRP (CFRP) laminates were prestressed and monitored for about 40 days. The data obtained from these experimental programs is in this paper presented and analysed. The observed prestress losses were later modelled using finite elements analysis and, although this topic is not addressed in this paper, the obtained results revealed considerable precision. The largest strain losses in the CFRP laminate were found to be mainly located in the extremities of the bonded length, while in the central zone most of the applied pre-strain was retained over time. The highest CFRP strain losses were observed in the first 6 to 12 days after prestress transfer, suggesting that the application of prestressed NSM-FRP will be very effective over time.
Resumo:
The influence of singlewalled carbon nanotubes (SWCNT) and inorganic fullerenelike tungsten disulfide nanoparticles (IFWS2) on the morphology and thermal, mechanical and electrical performance of multifunctional fibrereinforced polymer composites has been investigated. Significant improvements were observed in stiffness, strength and toughness in poly (ether ether ketone) (PEEK) / (SWCNT) / glass fibre (GF) laminates when a compatibilizer was used for wrapping the CNTs. Hybrid poly(phenylene sulphide) (PPS)/IFWS2/ carbon fibre (CF) reinforced polymer composites showed improved mechanical and tribological properties attributed to a synergetic effect between the IF nanoparticles and CF.
Resumo:
A semi-batch pyrolysis process was used to recover samples carbon fibre and glass fibre from their respective wastes. The mechanical properties of the recovered fibres were tested and compared to those of virgin fibres, showing good retention of the fibre properties. The recovered fibres were then used to prepare new LDPE composite materials with commercial and laboratory-synthesized compatibilizers. Mild oxidation of the post-pyrolysis recovered fibres and the use of different compatibilizers gave significant improvements in the mechanical properties of the LDPE composites; however some of the manufactured composites made from recovered fibres had properties similar to those made from virgin fibres.
Resumo:
The first part of this research work regards the assessment of the mathematical modelling of reinforced concrete columns confined with carbon fibre (CFRP) sheets under axial loading. The purpose was to evaluate existing analytical models, contribute to possible improvements and choose the best model(s) to be part of a new model for the prediction of the behaviour of confined columns under bending and compression. For circular columns, a wide group of authors have proposed several models specific for FRP-confined concrete. The analysis of some of the existing models was carried out by comparing these with several tested columns. Although several models predict fairly the peak load only few can properly estimate the load-strain and dilation behaviour of the columns. Square columns confined with CFRP show a more complex interpretation of their behaviour. Accordingly, the analysis of two experimental programs was carried out to propose new modelling equations for the whole behaviour of columns. The modelling results show that the analytical curves are in general agreement with the presented experimental curves for a wide range of dimensions. An analysis similar to the one done for circular columns was this turn carried out for square columns. Few models can fairly estimate the whole behaviour of the columns and with less accuracy at all levels when compared with circular columns. The second part of this study includes seven experimental tests carried out on reinforced concrete rectangular columns with rounded corners, different damage condition and with confinement and longitudinal strengthening systems. It was concluded that the use of CFRP confinement is viable and of effective performance enhancement alone and combined with other techniques, maintaining a good ductile behaviour for established threshold displacements. As regards the use of external longitudinal strengthening combined with CFRP confinement, this system is effective for the performance enhancement and viable in terms of execution. The load capacity was increased significantly, preserving also in this case a good ductile behaviour for threshold displacements. As to the numerical nonlinear modelling of the tested columns, the results show a variation of the peak load of 1% to 10% compared with tests results. The good results are partly due to the inclusion of the concrete constitutive model by Mander et al. modified by Faustino, Chastre & Paula taking into account the confinement effect. Despite the reasonable approximation to tests results, the modelling results showed higher unloading, which leads to an overestimate dissipated energy and residualdisplacement.
Resumo:
The use of prestressed near surface mounted fibre reinforced polymers (NSM-FRP) has been long acknowledged to be a suitable approach to strengthen and retrofit existing reinforced concrete structures. The application of a certain amount of prestress to the FRP prior to its installation provides a number of benefits, mainly related to crack width and deflection requisites at serviceability limit state conditions. After transferring the prestress to a structural element, some of the existing cracks can be closed, decreasing the vulnerability of the element to corrosion and, a certain amount of deflection can be recovered due to the introduced negative curvature. However, these benefits can only be assured if the prestress is properly preserved over time. In this context, three series of reinforced concrete beams, in a total of 10 beams, were strengthened with a prestressed carbon FRP laminate (CFRP) and monitored for about 40 days. The data obtained from these tests is in this paper presented and analysed. The observed losses of strain in the CFRP laminate were found to be mainly located in the extremities of the bonded length, while in the central zone most of the initial strain was well-preserved over time. Additionally, the highest CFRP strain losses were observed in the first 6 to 12 days after prestress transfer, suggesting that the benefits of prestressed NSM-FRP will not be considerably lost over time.
Resumo:
Dissertação de mestrado integrado em Engenharia Civil (área de especialização em Estruturas e Geotecnia)
Resumo:
It is well recognized that the technique of strengthening reinforced concrete (RC) using fiber-reinforced polymer (FRP) jackets is more effective for circular sections, but less effective for rectangular sections. Indeed the presence of angular corners does not permit a uniform confinement to be provided by the FRP jackets to the columns. While rounded corners can enhance the effectiveness of FRP confinement, it will be more efficient to modify the rectangular section into an elliptical section. In addition to the better confinement effectiveness, from an aesthetical point of view, the shape modification would be a surprise to the built environment. This paper presents an experimental study on the behavior of FRP-confined concrete columns with elliptical section. Thirty-two short columns, divided in eight batches, were tested under axial compression. Each batch presents four specimens with different elliptical sections, determined by the aspect ratio a/b, that is the ratio between the minor and mayor axis. By varying this value from 1.0 to 2.0 (1.0, 1.3., 1.7, 2.0), the section becomes more and more elliptical starting from a circular shape. In this way it is possible to study the trend of effectiveness of FRP confinement for different section geometries. It is also interesting to study how the confinement effectiveness may vary by changing the cylinder strength of concrete and the number of the layers of CFRP. For this reason, a cylinder strength of concrete of 25 and 45 MPa have been used for the present research work, and half of the specimens were wrapped by one layer of CFRP, while the remaining specimens were wrapped with two layers. A simple analysis of the results has been carried out for evaluating the experimental work described in the present document. Further studies and analysis on this work should help to achieve a new and more accurate stress-strain model for CFRP-confined concrete columns with an elliptical section.
Resumo:
Carbon Fiber Reinforced Polymers (CFRPs) are well renowned for their excellent mechanical properties, superior strength-to-weight characteristics, low thermal expansion coefficient, and fatigue resistance over any conventional polymer or metal. Due to the high stiffness of carbon fibers and thermosetting matrix, CFRP laminates may display some drawbacks, limiting their use in specific applications. Indeed, the overall laminate stiffness may lead to structural problems arising from their laminar structure, which makes them susceptible to structural failure by delamination. Moreover, such stiffness given by the constituents makes them poor at damping vibration, making the component more sensitive to noise and leading, at times, to delamination triggering. Nanofibrous mat interleaving is a smart way to increase the interlaminar fracture toughness: the use of thermoplastic polymers, such as poly(ε- caprolactone) (PCL) and polyamides (Nylons), as nonwovens are common and well established. Here, in this PhD thesis, a new method for the production of rubber-rich nanofibrous mats is presented. The use of rubbery nanofibers blended with PCL, widely reported in the literature, was used as matrix tougheners, processing DCB test results by evaluating Acoustic Emissions (AE). Moreover, water-soluble electrospun polyethylene oxide (PEO) nanofibers were proposed as an innovative method for reinforcing layers and hindering delamination in epoxy-based CFRP laminates. A nano-modified CFRP was then aged in water for 1 month and its delamination behaviour compared with the ones of the commercial laminate. A comprehensive study on the use of nanofibers with high rubber content, blended with a crystalline counterpart, as enhancers of the interlaminar properties were then investigated. Finally, PEO, PCL, and Nylon 66 nanofibers, plain or reinforced with Graphene (G), were integrated into epoxy-matrix CFRP to evaluate the effect of polymers and polymers + G on the laminate mechanical properties.
Resumo:
I compositi a matrice polimerica rinforzati con fibre di carbonio (Carbon fiber reinforced polymers, CFRP) posseggono proprietà meccaniche uniche rispetto ai materiali convenzionali, ed un peso decisamente inferiore. Queste caratteristiche, negli ultimi decenni, hanno determinato un crescente interesse nei confronti dei CFRP che ha portato a numerose applicazioni in settori come l’industria aerospaziale e l’automotive. Le sollecitazioni cui i CFRP laminati sono soggetti durante la vita d’uso possono causare fenomeni di delaminazione che, portando ad una drastica riduzione delle proprietà meccaniche del materiale, ne compromettono l’integrità strutturale. Nel presente lavoro di tesi, sono state integrate in laminati CFRP membrane elettrofilate da blend polimeriche con capacità di self-healing. Le migliori condizioni da applicare in fase di cura del composito sono state approfonditamente investigate mediante analisi termica (DSC). Per verificare la capacità di autoriparazione dei laminati modificati, è stata valutata la tenacità a frattura interlaminare in Modo I e Modo II prima e dopo il trattamento di attivazione del self-healing.
Resumo:
This paper focuses on the flexural behavior of RC beams externally strengthened with Carbon Fiber Reinforced Polymers (CFRP) fabric. A non-linear finite element (FE) analysis strategy is proposed to support the beam flexural behavior experimental analysis. A development system (QUEBRA2D/FEMOOP programs) has been used to accomplish the numerical simulation. Appropriate constitutive models for concrete, rebars, CFRP and bond-slip interfaces have been implemented and adjusted to represent the composite system behavior. Interface and truss finite elements have been implemented (discrete and embedded approaches) for the numerical representation of rebars, interfaces and composites.
Resumo:
Glass fibre-reinforced plastics (GFRP), nowadays commonly used in the construction, transportation and automobile sectors, have been considered inherently difficult to recycle due to both the cross-linked nature of thermoset resins, which cannot be remoulded, and the complex composition of the composite itself, which includes glass fibres, polymer matrix and different types of inorganic fillers. Hence, to date, most of the thermoset based GFRP waste is being incinerated or landfilled leading to negative environmental impacts and additional costs to producers and suppliers. With an increasing awareness of environmental matters and the subsequent desire to save resources, recycling would convert an expensive waste disposal into a profitable reusable material. In this study, the effect of the incorporation of mechanically recycled GFRP pultrusion wastes on flexural and compressive behaviour of polyester polymer mortars (PM) was assessed. For this purpose, different contents of GFRP recyclates (0%, 4%, 8% and 12%, w/w), with distinct size grades (coarse fibrous mixture and fine powdered mixture), were incorporated into polyester PM as sand aggregates and filler replacements. The effect of the incorporation of a silane coupling agent was also assessed. Experimental results revealed that GFRP waste filled polymer mortars show improved mechanical behaviour over unmodified polyester based mortars, thus indicating the feasibility of GFRP waste reuse as raw material in concrete-polymer composites.
Resumo:
In this study, the effect of incorporation of recycled glass fibre reinforced plastics (GFRP) waste materials, obtained by means of shredding and milling processes, on mechanical behaviour of polyester polymer mortars (PM) was assessed. For this purpose, different contents of GFRP recyclates, between 4% up to 12% in weight, were incorporated into polyester PM materials as sand aggregates and filler replacements. The effect of the addition of a silane coupling agent to resin binder was also evaluated. Applied waste material was proceeding from the shredding of the leftovers resultant from the cutting and assembly processes of GFRP pultrusion profiles. Currently, these leftovers as well as non-conform products and scrap resulting from pultrusion manufacturing process are landfilled, with additional costs to producers and suppliers. Hence, besides the evident environmental benefits, a viable and feasible solution for these wastes would also conduct to significant economic advantages. Design of experiments and data treatment were accomplish by means of full factorial design approach and analysis of variance ANOVA. Experimental results were promising toward the recyclability of GFRP waste materials as partial replacement of aggregates and reinforcement for PM materials, with significant improvements on mechanical properties of resultant mortars with regards to waste-free formulations.
Resumo:
Nowadays, fibre reinforced plastics are used in a wide variety of applications. Apart from the most known reinforcement fibres, like glass or carbon, natural fibres can be seen as an economical alternative. However, some mistrust is yet limiting the use of such materials, being one of the main reasons the inconsistency normally found in their mechanical properties. It should be noticed that these materials are more used for their low density than for their high stiffness. In this work, two different types of reinforced plates were compared: glass reinforced epoxy plate and sisal reinforced epoxy plate. For material characterization purposes, tensile and flexural tests were carried out. Main properties of both materials, like elastic modulus, tensile strength or flexural modulus, are presented and compared with reference values. Afterwards, plates were drilled under two different feed rates: low and high, with two diverse tools: twist and brad type drill, while cutting speed was kept constant. Thrust forces during drilling were monitored. Then, delamination area around the hole was assessed by using digital images that were processed using a computational platform previously developed. Finally, drilled plates were mechanically tested for bearing and open-hole resistance. Results were compared and correlated with the measured delamination. Conclusions contribute to the understanding of natural fibres reinforced plastics as a substitute to glass fibres reinforced plastics, helping on cost reductions without compromising reliability, as well as the consequence of delamination on mechanical resistance of this type of composites.
Resumo:
Glass fibre-reinforced plastics (GFRP), nowadays commonly used in the construction, transportation and automobile sectors, have been considered inherently difficult to recycle due to both: cross-linked nature of thermoset resins, which cannot be remolded, and complex composition of the composite itself, which includes glass fibres, matrix and different types of inorganic fillers. Presently, most of the GFRP waste is landfilled leading to negative environmental impacts and supplementary added costs. With an increasing awareness of environmental matters and the subsequent desire to save resources, recycling would convert an expensive waste disposal into a profitable reusable material. There are several methods to recycle GFR thermostable materials: (a) incineration, with partial energy recovery due to the heat generated during organic part combustion; (b) thermal and/or chemical recycling, such as solvolysis, pyrolisis and similar thermal decomposition processes, with glass fibre recovering; and (c) mechanical recycling or size reduction, in which the material is subjected to a milling process in order to obtain a specific grain size that makes the material suitable as reinforcement in new formulations. This last method has important advantages over the previous ones: there is no atmospheric pollution by gas emission, a much simpler equipment is required as compared with ovens necessary for thermal recycling processes, and does not require the use of chemical solvents with subsequent environmental impacts. In this study the effect of incorporation of recycled GFRP waste materials, obtained by means of milling processes, on mechanical behavior of polyester polymer mortars was assessed. For this purpose, different contents of recycled GFRP waste materials, with distinct size gradings, were incorporated into polyester polymer mortars as sand aggregates and filler replacements. The effect of GFRP waste treatment with silane coupling agent was also assessed. Design of experiments and data treatment were accomplish by means of factorial design and analysis of variance ANOVA. The use of factorial experiment design, instead of the one factor at-a-time method is efficient at allowing the evaluation of the effects and possible interactions of the different material factors involved. Experimental results were promising toward the recyclability of GFRP waste materials as polymer mortar aggregates, without significant loss of mechanical properties with regard to non-modified polymer mortars.