277 resultados para CATCHMENTS
Resumo:
Hydrological loss is a vital component in many hydrological models, which are usedin forecasting floods and evaluating water resources for both surface and subsurface flows. Due to the complex and random nature of the rainfall runoff process, hydrological losses are not yet fully understood. Consequently, practitioners often use representative values of the losses for design applications such as rainfall-runoff modelling which has led to inaccurate quantification of water quantities in the resulting applications. The existing hydrological loss models must be revisited and modellers should be encouraged to utilise other available data sets. This study is based on three unregulated catchments situated in Mt. Lofty Ranges of South Australia (SA). The paper focuses on conceptual models for: initial loss (IL), continuing loss (CL) and proportional loss (PL) with rainfall characteristics (total rainfall (TR) and storm duration (D)), and antecedent wetness (AW) conditions. The paper introduces two methods that can be implemented to estimate IL as a function of TR, D and AW. The IL distribution patterns and parameters for the study catchments are determined using multivariate analysis and descriptive statistics. The possibility of generalising the methods and the limitations of this are also discussed. This study will yield improvements to existing loss models and will encourage practitioners to utilise multiple data sets to estimate losses, instead of using hypothetical or representative values to generalise real situations.
Resumo:
While the simulation of flood risks originating from the overtopping of river banks is well covered within continuously evaluated programs to improve flood protection measures, flash flooding is not. Flash floods are triggered by short, local thunderstorm cells with high precipitation intensities. Small catchments have short response times and flow paths and convective thunder cells may result in potential flooding of endangered settlements. Assessing local flooding and pathways of flood requires a detailed hydraulic simulation of the surface runoff. Hydrological models usually do not incorporate surface runoff at this detailedness but rather empirical equations are applied for runoff detention. In return 2D hydrodynamic models usually do not allow distributed rainfall as input nor are any types of soil/surface interaction implemented as in hydrological models. Considering several cases of local flash flooding during the last years the issue emerged for practical reasons but as well as research topics to closing the model gap between distributed rainfall and distributed runoff formation. Therefore, a 2D hydrodynamic model, depth-averaged flow equations using the finite volume discretization, was extended to accept direct rainfall enabling to simulate the associated runoff formation. The model itself is used as numerical engine, rainfall is introduced via the modification of waterlevels at fixed time intervals. The paper not only deals with the general application of the software, but intends to test the numerical stability and reliability of simulation results. The performed tests are made using different artificial as well as measured rainfall series as input. Key parameters of the simulation such as losses, roughness or time intervals for water level manipulations are tested regarding their impact on the stability.
Resumo:
The Short-term Water Information and Forecasting Tools (SWIFT) is a suite of tools for flood and short-term streamflow forecasting, consisting of a collection of hydrologic model components and utilities. Catchments are modeled using conceptual subareas and a node-link structure for channel routing. The tools comprise modules for calibration, model state updating, output error correction, ensemble runs and data assimilation. Given the combinatorial nature of the modelling experiments and the sub-daily time steps typically used for simulations, the volume of model configurations and time series data is substantial and its management is not trivial. SWIFT is currently used mostly for research purposes but has also been used operationally, with intersecting but significantly different requirements. Early versions of SWIFT used mostly ad-hoc text files handled via Fortran code, with limited use of netCDF for time series data. The configuration and data handling modules have since been redesigned. The model configuration now follows a design where the data model is decoupled from the on-disk persistence mechanism. For research purposes the preferred on-disk format is JSON, to leverage numerous software libraries in a variety of languages, while retaining the legacy option of custom tab-separated text formats when it is a preferred access arrangement for the researcher. By decoupling data model and data persistence, it is much easier to interchangeably use for instance relational databases to provide stricter provenance and audit trail capabilities in an operational flood forecasting context. For the time series data, given the volume and required throughput, text based formats are usually inadequate. A schema derived from CF conventions has been designed to efficiently handle time series for SWIFT.
Resumo:
Este trabalho teve como objetivo avaliar as características morfométricas das microbacias (2ª, 3ª, 4ª e 5ª ordens de magnitude) da bacia hidrográfica do córrego Rico, sub-bacia do Rio Mogi-Guaçu, localizada na região administrativa de Ribeirão Preto, Estado de São Paulo, Brasil. Para tanto, foram determinados os parâmetros físicos e a configuração topográfica natural do sistema de drenagem. Os procedimentos para a obtenção dos dados foram fundamentados em técnicas de sensoriamento remoto e geoprocessamento. A partir da vetorização das cartas topográficas correspondentes à área de estudo, realizou-se a análise morfométrica quanto às características dimensionais, do padrão de drenagem e do relevo no sistema de informação geográfica ArcView. A microbacia é considerada de sexta ordem de magnitude, com área estimada de 542 km², com 85 microbacias de segunda ordem, 22 de terceira, sete de quarta ordem e duas de quinta. Utilizando o critério geométrico, na disposição fluvial das sub-bacias de cabeceiras observou-se a predominância dos modelos dendríticos e subdendríticos, enquanto a jusante predominava o modelo subparalelo, respectivamente, nas áreas de ocorrências dos arenitos Bauru e rochas efusivas básicas.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Mean areal radar rainfall over catchments in the State of São Paulo is an operational product under development by the Meteorological Research Institute - IPMet. A pilot project is being carried out which focuses on the important Corumbatai River basin, under surveillance by the IPMet-operated Bauru radar. Previous work on the project explored the relative impact of factors like time resolution of radar data and reflectivity to rain-rate conversion relationships, when the relevance of the latter was verified. This paper deals with the stratification of those relationships by daily intervals and its impact on flow estimates. Daily values of radar mean rainfall using gauges and different conversion relationships are plotted against the corresponding flow at the basin outlet. Flow estimates derived by applying the rainfall from the different relationships to a previously obtained rainfall-runoff curve for the basin is compared to the historical hydrograph. Preliminary results suggest stratification has hydrological significance.
Resumo:
Activity profiles of excess 210Pb measured in four sediment cores from the Corumbataí River basin, São Paulo State, Brazil, provided an opportunity to evaluate sedimentation rates that are helpful for defining appropriate management strategies for the hydrological resources in the basin. This is because Rio Claro city and other municipalities make extensive use of surface waters for drinking water supply. The radiochemical analysis of the sediment cores yielded apparent sediment mass accumulation rates of between 406 and 1014 mg cm-2 year-1 for secondary drainage lines, whereas an intermediate value of 546 mg cm-2 year-1 was found in the Corumbataí River, the main drainage system of the studied area. These values provided estimates of average linear sedimentation rates of between 3.1 and 16.2 mm year-1 that are compatible with field evidence, with the highest value corresponding with an area characterized by accumulation of sediment.
Resumo:
Forest roads are frequently pointed as source of environmental problems related to erosion and they also influence harvest cost due to maintenance operations. Roads not well designed are sources of hydrological problems on catchments and the current attention to sustainability of forest exploration projects point out to the need of diagnostics tools for guiding the redesign of the road system. At this study, runoff hydrological indicators for forest road segments were assessed in order to identify critical points of erosion and water concentration on soils. A road network of a forest production area was divided into 252 road segments that were used as observations of four variables: mean terrain slope, main segment slope, LS factor and topographic index. The data analysis was based on descriptive statistics for outliers' identification, principal component analysis and for variability study between variables and between observations, and cluster analysis for similar segments groups' identification. The results allowed classifying roads segments into five mains road types: road on the ridge, on the valley, on the slopes, on the slopes but in a contour line and on the steepest slope. The indicators were able to highlight the most critical segments that differ of others and are potential sources of erosion and water accumulation problems on forest roads. The principal component analysis showed two main variability sources related to terrain topographic characteristics and also road design, showing that indicators represent well those elements. The methodology seems to be appropriated for identification of critical road segments that need to be redesigned and also for road network planning at new forest exploration projects.
Resumo:
In São Paulo state, deforestation and agriculture activities are increasing soil losses processes, especially in areas of susceptible soils where soil conservation practices are not adopted. Environmental adequacy at property level regarding Permanent Protection Areas and Legal Reserves is considered a potential factor for reducing soil losses and it was based on this fact that we assessed soil losses of different scenarios of environmental adequacy. Simulations of erosive processes were carried out in 15 catchments of the Corumbataí river basin, with different forest restoration scenarios, as well as the current situation of land use/ land cover. The scenarios include reforestation of Permanent Preservation Areas (PPA); the reforestation hydrological sensitive areas; and two scenarios, the Legal Reserve installation in 20% of each catchment, being one of them for most critical areas in terms of erosion and the other at random. It was observed that the establishment of PPA and the reforestation of hydrological sensitive areas (HSA), offered a small contribution to the control of the erosive process, resulting in a reduction of 10% and 7.4%, respectively, while the legal reserve in critical areas has the significant reduction of 69.8%. The random scenario, in turn, resulted in a reduction of 21.4% of erosion. Results show that reforestation can reduce soil losses, but previous studies of land prioritization and planning could significantly increase its efficiency.
Resumo:
Water security which is essential to life and livelihood, health and sanitation, is determined not only by the water resource, but also by the quality of water, the ability to store surplus from precipitation and runoff, as well as access to and affordability of supply. All of these measures have financial implications for national budgets. The water sector in the context of the assessment and discussion on the impact of climate change in this paper includes consideration of the existing as well as the projected available water resource and the demand in terms of: quantity and quality of surface and ground water, water supply infrastructure - collection, storage, treatment, distribution, and potential for adaptation. Wastewater management infrastructure is also considered a component of the water sector. Saint Vincent and the Grenadines has two distinct hydrological regimes: mainland St Vincent is one of the wetter islands of the eastern Caribbean whereas the Grenadines have a drier climate than St Vincent. Surface water is the primary source of water supply on St Vincent, whereas the Grenadines depend on man-made catchments, rainwater harvesting, wells, and desalination. The island state is considered already water stressed as marked seasonality in rainfall, inadequate supply infrastructure, and institutional capacity constrains water supply. Economic modelling approaches were implemented to estimate sectoral demand and supply between 2011 and 2050. Residential, tourism and domestic demand were analysed for the A2, B2 and BAU scenarios. In each of the three scenarios – A2, B2 and BAU Saint Vincent and the Grenadines will have a water gap represented by the difference between the two curves during the forecast period of 2011 and 2050. The amount of water required increases steadily between 2011 and 2050 implying an increasing demand on the country‘s resources as reflected by the fact that the water supply that is available cannot respond adequately to the demand. The Global Water Partnership in its 2005 policy brief suggested that the best way for countries to build the capacity to adapt to climate change will be to improve their ability to cope with today‘s climate variability (GWP, 2005). This suggestion is most applicable for St Vincent and the Grenadines, as the variability being experienced has already placed the island nation under water stress. Strategic priorities should therefore be adopted to increase water production, increase efficiency, strengthen the institutional framework, and decrease wastage. Cost benefit analysis was stymied by data availability, but the ―no-regrets approach‖ which intimates that adaptation measures will be beneficial to the land, people and economy of Saint Vincent and the Grenadines with or without climate change should be adopted.
Resumo:
Changing precipitation patterns and temperature relate directly to water resources and water security. This report presents the findings of an assessment of the water sector in Grenada with respect to the projected impact of climate change. Grenada‘s water resources comprise primarily surface water, with an estimated groundwater potential to satisfy about 10%-15% of the present potable requirement. On the smaller islands Carriacou and Petite Martinique, domestic water is derived exclusively from rainwater catchments. Rainfall seasonality is marked and the available surface water during the dry season declines dramatically. Changing land use patterns, increase in population, expansion in tourism and future implementation of proposed irrigation schemes are projected to increase future water requirements. Economic modeling approaches were implemented to estimate sectoral demand and supply between 2011 and 2050. Residential, tourism and domestic demand were analysed for the A2, B2 and BAU scenarios as illustrated. The results suggest that water supply will exceed forecasted water demand under B2 and BAU during all four decades. However under the A2 scenario, water demand will exceed water supply by the year 2025. It is important to note that the model has been constrained by the omission of several key parameters, and time series for climate indicators, data for which are unavailable. Some of these include time series for discharge data, rainfall-runoff data, groundwater recharge rates, and evapotranspiration. Further, the findings which seem to indicate adequacy of water are also masked by seasonality in a given year, variation from year to year, and spatial variation within the nation state. It is imperative that some emphasis be placed on data generation in order to better project for the management of Grenada‘s water security. This analysis indicates the need for additional water catchment, storage and distribution infrastructure, as well as institutional strengthening, in order to meet the future needs of the Grenadian population. Strategic priorities should be adopted to increase water production, increase efficiency, strengthen the institutional framework, and decrease wastage. Grenada has embarked on several initiatives that can be considered strategies toward adaptation to the variabilities associated with climate change. The Government should ensure that these programs be carried out to the optimal levels for reasons described above. The ―no-regrets approach‖ which intimates that measures will be beneficial with or without climate change should be adopted. A study on the Costs of Inaction for the Caribbean in the face of climate change listed Grenada among the countries which would experience significant impacts on GDP between now and 2100 without adaptation interventions. Investment in the water sector is germane to building Grenada‘s capacity to cope with the multivariate impact of changes in the parameters of climate.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O presente estudo teve como objetivo avaliar a dinâmica do carbono em uma região da Amazônia Oriental, cujo uso da terra predominante é a agricultura familiar; a unidade espacial adotada neste estudo foram três pequenas bacias de drenagem. A dinâmica do carbono foi avaliada a partir de medidas hidrológicas e biogeoquímicas em águas dos igarapés Cumaru, Pachibá e São João entre junho de 2006 a maio de 2007. O ambiente aquático e a hidrogeoquímica fluvial foram caracterizados a partir de medidas in situ da condutividade elétrica, temperatura, pH e concentração de oxigênio dissolvido. Amostras de água foram coletadas e analisadas para determinação do carbono orgânico dissolvido (COD) e pressão parcial do dióxido de carbono (pCO 2 ). A partir dos valores de pCO 2 , foram calculadas as concentrações de carbono inorgânico dissolvido (CID). Já os fluxos de C02 foram medidos in situ e também calculados a partir do pC0 2 . Utilizando-se medidas de vazão instantânea a cada campanha mensal de campo, calcularam-se fluxos anuais de COD. A caracterização dos solos e do uso da terra nas porções estudadas das bacias, assim como os índices pluviométricos e fluviométricos, foram considerados na interpretação dos resultados. Podem-se enumerar como principais resultados o seguinte: 1) As características físico-químicas das águas fluviais das bacias estudadas retrataram seus solos ácidos, a vegetação ripária, e processos hidrológicos biogeoquímicos no ambiente aquático e terrestre, e com certa variabilidade sazonal; 2)0 pH e o oxigênio dissolvido se correlacionaram positivamente com o carbono dissolvido na coluna d'água; 3) O transporte de COD por unidade de área foi elevado quando comparado com outras bacias amazônicas, e mais intenso em períodos chuvosos; 4) O transporte de COD e a evasão de C0 2 pareceram responder positivamente à presença de vegetação secundária e floresta densa, e negativamente às atividades agropecuárias; e 5) As taxas de evasão de C0 2 foram elevadas comparando-as a outros rios amazônicos, e corroboram a hipótese de que pequenas bacias são importante fontes de C0 2 para atmosfera na região.
Resumo:
A Amazônia Brasileira encontra-se em uma posição privilegiada no cenário de escassez da água, pois a bacia Amazônica apresenta alto índice de pluviosidade e detém a maior rede hidrográfica do planeta (6.925.000 km2), da qual cerca de 63% está localizada no Brasil. Todavia, a qualidade dos recursos hídricos encontra-se ameaçada, uma vez que, desde a construção da BR-010, a rodovia Belém- Brasília, em 1958, iniciou-se um processo de ocupação acelerada da Amazônia Oriental, que tem promovido profundas mudanças na paisagem por meio do intenso desmatamento relacionado às atividades madeireiras e agropecuárias. Desse modo, considerando as significativas diferenças no uso dos recursos hídricos e os impactos ambientais sobre os mesmos, por diferentes agentes sociais, especialmente os atores envolvidos nos setores da pecuária e da agricultura de grãos na Amazônia Oriental. Pretendeu-se identificar e avaliar os fatores condicionantes que influenciam no comportamento de produtores rurais atuantes nas bacias dos igarapés Cinqüenta e Quatro e Sete, em Paragominas (PA). Nesse contexto, procurou-se verificar se esses atores utilizam técnicas agropecuárias apropriadas nos sistemas de produção adotados, incluindo o manejo do solo, e se possuem alguma preocupação pró-ativa na conservação dos igarapés amazônicos que drenam suas propriedades, e em particular na manutenção da qualidade dessas águas. Dados secundários de qualidade da água e da dinâmica do uso da terra dessas bacias embasaram o presente trabalho, tendo sido relacionados com as práticas agropecuárias e o manejo do solo adotados pelas propriedades rurais estudadas. Foram identificados alguns fatores condicionantes que influenciam no manejo praticado nas propriedades rurais, determinando as mudanças de uso da terra e de cobertura vegetal na s bacias avaliadas, e que resultam em impactos diferenciados sobre a qualidade da água nos cursos d’água. Esses fatores condicionantes são: (1) a ocupação da terra e padrões de manejo da propriedade rural adotado pelos diferentes agentes sociais atuantes nas bacias; (2) o descumprimento da legislação ambiental que institui uma política de preservação dos recursos naturais, sobretudo, dos recursos hídricos; (3) os interesses econômicos, que priorizam produtividade e lucratividade imediata, em detrimento da sustentabilidade do capital natural água; e (4) as tecnologias agropecuárias ditas conservacionistas, que não estimulam uma visão integrada entre os diferentes componentes da paisagem, desconsiderando impactos sobre os recursos hídricos. Conclui-se, desse modo, que a qualidade da água nas bacias do Igarapé Cinqüenta e Quatro e do Igarapé do Sete está comprometida, principalmente, pelas práticas agropecuárias e manejo das propriedades adotadas pelos produtores. Dentre os fatores identificados, destaca-se que a adoção ou não adoção das técnicas conservacionistas, quando não acopladas a uma visão integrada dos componentes ambientais, teve pouca influência sobre a preservação dos recursos hídricos nas bacias analisadas, assim como , de maneira geral, áreas de preservação permanente não são respeitadas. A conseqüência observada, sob a ótica da legislação brasileira, é o comprometimento do uso múltiplo da água nas bacias estudadas.