879 resultados para CANCER-CELL CYTOTOXICITY
Resumo:
The vertebrate $\beta$-galactoside-binding lectins galectin-1 and galectin-3 have been proposed to function in diverse cellular processes such as adhesion, proliferation, differentiation, and tumorigenesis. Experiments were initiated to further study the functional properties of these molecules. A prostate cancer cell line, LNCaP, was identified which expressed neither galectin. This line was stably transfected with cDNA for either galectin-1 or galectin-3. The resultant clones were used to study effects on critical cell processes. LNCaP cells expressing galectin-1 on the surface were found to bind more rapidly than control lines to the human extracellular matrix proteins laminin and fibronectin, although overall binding was not increased. To analyze effects on differentiation, LNCaP cells were studied which had either been transfected with galectin-1 or which had been induced to express endogenous galectin-1 by treatment with the differentiation agent sodium butyrate. In both cases, cells displayed a slower rate of growth and increased rate of apoptosis. A transient decrease in expression of prostate specific antigen was seen in the butyrate treated cells but not in the transfected cells. To investigate the role of galectins in the process of malignant transformation and progression, immunohistochemical analysis was performed on formalin-fixed, paraffin-embedded sections of human prostate tissue, the premalignant lesion prostatic intraepithelial neoplasia, primary adenocarcinoma of the prostate, and foci of metastatic prostate cancer. Galectin-1 expression was relatively constant throughout in contrast to galectin-3 which demonstrated significantly less expression in primary and metastatic tumors. LNCaP cells transfected with galectin-3 cDNA displayed lower proliferation rates, increased spontaneous apoptosis, and G1 growth phase arrest compared to controls. Four of six galectin-3 lines tested were less tumorigenic in nude mice than controls. The following conclusions are drawn regarding the role of galectin-1 and galectin-3 expression in the context of prostate cancer: (1) galectin-1 may participate in the early stages of cancer cell adhesion to extracellular matrix proteins; (2) galectin-1 expression results in a differentiated phenotype and may contribute to differentiation induction by butyrate; (3) galectin-3 expression correlates inversely with prostate cell tumorigenesis and prostate cancer metastasis. ^
Resumo:
Colon cancer is the second leading cause of cancer mortality in the U.S. Surgery is the only truly effective human colon cancer (HCC) therapy due to marked intrinsic drug resistance. The inefficacy of therapies developed for metastatic HCC suggests that advances in colon cancer chemoprevention and chemotherapy will be needed to reduce HCC mortality. The dietary fiber metabolite butyrate (NaB) is a candidate cancer chemopreventive agent that inhibits growth, promotes differentiation and stimulates apoptosis of HCC cells. Epidemiological and experimental studies suggest that dietary fiber protects against the development of HCC, however, recent large prospective trials have not found significant protection. ^ The first central hypothesis of this dissertation project is that the diversity of phenotypic changes induced by NaB in HCC cells includes molecular alterations that oppose its chemopreventive action and thereby limit its efficacy. We investigated the effect of NaB on the expression/activity of epidermal growth factor receptor (EGFR) and cyclooxygenase-2 (COX-2) in HCC HT29 cells. NaB treatment induced a 13-fold increase in EGFR expression in concert with its chemopreventive action in vitro, i.e., induction of growth suppression and G1 arrest, apoptosis and a differentiated phenotype. NaB-induced EGFR was active based on multiple lines of evidence. The EGFR was: (1) heavily phosphorylated at Tyrosine (P-Tyr); (2) associated with the cytoskeleton; (3) localized at the cell surface, and activated in response to EGF; and (4) NaB treatment of the cells induced activation of the EGFR effector Erk1/2. NaB treatment also induced a 7-fold increase in COX-2 expression. The NaB-induced COX-2 was active based on significantly increased PGE2 production. ^ The second central hypothesis is that NaB treatment would render HCC cells more chemosensitive to chemotherapy agents based on the increased apoptotic index induced by NaB. NaB treatment chemosensitized HT29 cells to 5-FU and doxorubicin, despite increases in the expression of P-glycoprotein and a related drug resistance protein (MRP). ^ These results raise the intriguing possibility that the chemopreventive effects of fiber may require concomitant treatment with EGFR and/or COX-2 inhibitors. Similarly, NaB may be a rational drug to combine with existing chemotherapeutic agents for the management of advanced HCC patients. ^
Resumo:
Coumarins are extensively studied anticoagulants that exert additional effects such as anticancerogenic and even anti-inflammatory. In order to find new drugs with anticancer activities, we report here the synthesis and the structural analysis of new coumarin derivatives which combine the coumarin core and five member heterocycles in hydrazinylidene-chroman-2,4-diones. The derivatives were prepared by derivatization of the appropriate heterocyclic amines which were used as electrophiles to attack the coumarin ring. The structures were characterized by spectroscopic techniques including IR, NMR, 2D-NMR and MS. These derivatives were further characterized especially in terms of a potential cytotoxic and apoptogenic effect in several cancer cell lines including the breast and prostate cancer cell lines MCF-7, MDA-MB-231, PC-3, LNCaP, and the monocytic leukemia cell line U937. Cell viability was determined after 48 h and 72 h of treatment with the novel compounds by MTT assay and the 50% inhibitory concentrations (EC50 values) were determined. Out of the 8 novel compounds screened for reduced cell viability, 4c, 4d and 4e were found to be the most promising and effective ones having EC50 values that were several fold reduced when compared to the reference substance 4-hydroxycoumarin. However, the effects were cancer cell line dependent. The breast cancer MDA-MB-231 cells, the prostate cancer LNCaP cells, and U937 cells were most sensitive, MCF-7 cells were less sensitive, and PC-3 cells were more resistant. Reduced cell viability was accompanied by increased apoptosis as shown by PARP-1 cleavage and reduced activity of the survival protein kinase Akt. In summary, this study has identified three novel coumarin derivatives that in comparison to 4-hydroxycoumarin have a higher efficiency to reduce cancer cell viability and trigger apoptosis and therefore may represent interesting novel drug candidates
Resumo:
Background and Purpose Ceramide kinase (CerK) catalyzes the generation of ceramide-1-phosphate which may regulate various cellular functions, including inflammatory reactions and cell growth. Here, we studied the effect of a recently developed CerK inhibitor, NVP-231, on cancer cell proliferation and viability and investigated the role of cell cycle regulators implicated in these responses. Experimental Approach The breast and lung cancer cell lines MCF-7 and NCI-H358 were treated with increasing concentrations of NVP-231 and DNA synthesis, colony formation and cell death were determined. Flow cytometry was performed to analyse cell cycle distribution of cells and Western blot analysis was used to detect changes in cell cycle regulator expression and activation. Key Results In both cell lines, NVP-231 concentration-dependently reduced cell viability, DNA synthesis and colony formation. Moreover it induced apoptosis, as measured by increased DNA fragmentation and caspase-3 and caspase-9 cleavage. Cell cycle analysis revealed that NVP-231 decreased the number of cells in S phase and induced M phase arrest with an increased mitotic index, as determined by increased histone H3 phosphorylation. The effect on the cell cycle was even more pronounced when NVP-231 treatment was combined with staurosporine. Finally, overexpression of CerK protected, whereas down-regulation of CerK with siRNA sensitized, cells for staurosporine-induced apoptosis. Conclusions and Implications Our data demonstrate for the first time a crucial role for CerK in the M phase control in cancer cells and suggest its targeted inhibition, using drugs such as NVP-231, in combination with conventional pro-apoptotic chemotherapy.
Resumo:
11β-Hydroxysteroid dehydrogenases (11beta-HSD) modulate mineralocorticoid receptor transactivation by glucocorticoids and regulate access to the glucocorticoid receptor. The isozyme 11beta-HSD2 is selectively expressed in mineralocorticoid target tissues and its activity is reduced in various disease states with abnormal sodium retention and hypertension, including the apparent mineralocorticoid excess. As 50% of patients with essential hypertension are insulin resistant and hyperinsulinemic, we hypothesized that insulin downregulates the 11beta-HSD2 activity. In the present study we show that insulin reduced the 11beta-HSD2 activity in cancer colon cell lines (HCT116, SW620 and HT-29) at the transcriptional level, in a time and dose dependent manner. The downregulation was reversible and required new protein synthesis. Pathway analysis using mRNA profiling revealed that insulin treatment modified the expression of the transcription factor family C/EBPs (CCAAT/enhancer-binding proteins) but also of glycolysis related enzymes. Western blot and real time PCR confirmed an upregulation of C/EBP beta isoforms (LAP and LIP) with a more pronounced increase in the inhibitory isoform LIP. EMSA and reporter gene assays demonstrated the role of C/EBP beta isoforms in HSD11B2 gene expression regulation. In addition, secretion of lactate, a byproduct of glycolysis, was shown to mediate insulin-dependent HSD11B2 downregulation. In summary, we demonstrate that insulin downregulates HSD11B2 through increased LIP expression and augmented lactate secretion. Such mechanisms are of interest and potential significance for sodium reabsorption in the colon.
Resumo:
Cancer is responsible for millions of deaths worldwide and the variability in disease patterns calls for patient-specific treatment. Therefore, personalized treatment is expected to become a daily routine in prospective clinical tests. In addition to genetic mutation analysis, predictive chemosensitive assays using patient's cells will be carried out as a decision making tool. However, prior to their widespread application in clinics, several challenges linked to the establishment of such assays need to be addressed. To best predict the drug response in a patient, the cellular environment needs to resemble that of the tumor. Furthermore, the formation of homogeneous replicates from a scarce amount of patient's cells is essential to compare the responses under various conditions (compound and concentration). Here, we present a microfluidic device for homogeneous spheroid formation in eight replicates in a perfused microenvironment. Spheroid replicates from either a cell line or primary cells from adenocarcinoma patients were successfully created. To further mimic the tumor microenvironment, spheroid co-culture of primary lung cancer epithelial cells and primary pericytes were tested. A higher chemoresistance in primary co-culture spheroids compared to primary monoculture spheroids was found when both were constantly perfused with cisplatin. This result is thought to be due to the barrier created by the pericytes around the tumor spheroids. Thus, this device can be used for additional chemosensitivity assays (e.g. sequential treatment) of patient material to further approach the personalized oncology field.
Resumo:
BACKGROUND & AIMS Senescence prevents cellular transformation. We investigated whether vascular endothelial growth factor (VEGF) signaling via its receptor, VEGFR2, regulates senescence and proliferation of tumor cells in mice with colitis-associated cancer (CAC). METHODS CAC was induced in VEGFR2(ΔIEC) mice, which do not express VEGFR2 in the intestinal epithelium, and VEGFR2(fl/fl) mice (controls) by administration of azoxymethane followed by dextran sodium sulfate. Tumor development and inflammation were determined by endoscopy. Colorectal tissues were collected for immunoblot, immunohistochemical, and quantitative polymerase chain reaction analyses. Findings from mouse tissues were confirmed in human HCT116 colorectal cancer cells. We analyzed colorectal tumor samples from patients before and after treatment with bevacizumab. RESULTS After colitis induction, VEGFR2(ΔIEC) mice developed significantly fewer tumors than control mice. A greater number of intestinal tumor cells from VEGFR2(ΔIEC) mice were in senescence than tumor cells from control mice. We found VEGFR2 to activate phosphatidylinositol-4,5-bisphosphate-3-kinase and AKT, resulting in inactivation of p21 in HCT116 cells. Inhibitors of VEGFR2 and AKT induced senescence in HCT116 cells. Tumor cell senescence promoted an anti-tumor immune response by CD8(+) T cells in mice. Patients whose tumor samples showed an increase in the proportion of senescent cells after treatment with bevacizumab had longer progression-free survival than patients in which the proportion of senescent tumor cells did not change before and after treatment. CONCLUSIONS Inhibition of VEGFR2 signaling leads to senescence of human and mouse colorectal cancer cells. VEGFR2 interacts with phosphatidylinositol-4,5-bisphosphate-3-kinase and AKT to inactivate p21. Colorectal tumor senescence and p21 level correlate with patient survival during treatment with bevacizumab.
Resumo:
Cardiac glycoside compounds have traditionally been used to treat congestive heart failure. Recently, reports have suggested that cardiac glycosides may also be useful for treatment of malignant disease. Our research with oleandrin, a cardiac glycoside component of Nerium oleander, has shown it to be a potent inducer of human but not murine tumor cell apoptosis. Determinants of tumor sensitivity to cardiac glycosides were therefore studied in order to understand the species selective cytotoxic effects as well as explore differential sensitivity amongst a variety of human tumor cell lines. ^ An initial model system involved a comparison of human (BRO) to murine (B16) melanoma cells. Human BRO cells were found to express both the sensitive α3 as well as the less sensitive α1 isoform subunits of Na+,K +-ATPase while mouse B16 cells expressed only the α1 isoform. Drug uptake and inhibition of Na+,K+-ATPase activity were also different between BRO and B16 cells. Partially purified human Na+,K+-ATPase enzyme was inhibited by cardiac glycosides at a concentration that was 1000-fold less than that required to inhibit mouse B16 enzyme to the same extent. In addition, uptake of oleandrin and ouabain was 3–4 fold greater in human than murine cells. These data indicate that differential expression of Na+,K+-ATPase isoform composition in BRO and B16 cells as well as drug uptake and total enzyme activity may all be important determinants of tumor cell sensitivity to cardiac glycosides. ^ In a second model system, two in vitro cell culture model systems were investigated. The first consisted of HFU251 (low expression of Na+,K+-ATPase) and U251 (high Na+ ,K+-ATPase expression) cell lines. Also investigated were human BRO cells that had undergone stable transfection with the α1 subunit resulting in an increase in total Na+,K+-ATPase expression. Data derived from these model systems have indicated that increased expression of Na+,K+-ATPase is associated with an increased resistance to cardiac glycosides. Over-expression of Na +,K+-ATPase in tumor cells resulted in an increase of total Na+,K+-ATPase activity and, in turn, a decreased inhibition of Na+,K+-ATPase activity by cardiac glycosides. However, of interest was the observation that increased enzyme expression was also associated with an elevated basal level of glutathione (GSH) within cells. Both increased Na+,K+-ATPase activity and elevated GSH content appear to contribute to a delayed as well as diminished release of cytochrome c and caspase activation. In addition, we have noted an increased colony forming ability in cells with a high level of Na+,K+-ATPase expression. This suggests that Na+,K+-ATPase is actively involved in tumor cell growth and survival. ^
Resumo:
Polyomavirus enhancer activator 3 (PEA3) is a member of the Ets family of transcription factors. We demonstrated in a previous study that, through down-regulating the HER-2/neu oncogene at the transcriptional level, PEA3 can inhibit the growth and tumor development of HER-2/neu-overexpressing ovarian cancer cells. Here, we established stable clones of the human breast cancer cell line MDA-MB-361DYT2 that express PEA3 under the control of a tetracycline-inducible promoter. The expression of PEA3 in this cell line inhibited cell growth and resulted in cell cycle delay in the G1 phase independently of the HER-2/neu down-regulation. In an orthotopic breast cancer model, we showed that expression of PEA3 inhibited tumor growth and prolonged the survival of tumor-bearing mice. In a parallel experiment in another breast cancer cell line, BT474M1, we were unable to obtain stable PEA3-inducible transfectants, which suggests that PEA3 possessed a strong growth inhibitory effect in this cell line. Indeed, PEA3 coupled with the liposome SN2 demonstrated therapeutic effects in mice bearing tumors induced by BT474M1. These results provide evidence that the PEA3 gene could function as an antitumor and gene therapy agent for human breast cancers. ^
Resumo:
Recent publications have questioned the origin of the MDA-MB-435 breast cancer cell line and have suggested that it is of melanocyte origin rather than breast epithelial origin. The data presented herein show unequivocally that MDA-MB-435 does express breast epithelial markers and produces milk-specific lipids. The data also indicated that MDA-MB-435 does express some melanocyte proteins but this expression occurs in the same MDA-MB-435 cells that express breast epithelial proteins. Although MDA-MB-435 does not strictly adhere to a breast lineage, it does retain breast specific markers and is thus valid as an experimental cell line in breast cancer studies. ^ Heregulinβ1 (HRGβ1) has been shown to both stimulate and inhibit breast tumorigenic and metasastasic phenotypes. Some studies used only the EGF-like domain of the extracellular domain of HRGβ1 while others used bacterially-expressed HRGβ1. Our in vitro data demonstrated that the full-length extracellular domain of human HRGβ1 reduced clonal growth of MDA-MB-435 breast cancer cells but stimulated apoptosis in MDA-MB-435 and MCF-7 breast cancer cells. In addition, mammalian-expressed HRGβ1 did not dramatically affect matrix metalloproteinase-9 activity but did inhibit cell motility of MDA-MB-435 and MCF-7 cells. Taken together, the in vitro data indicated that HRGβ1 inhibits metastasis-associated properties. ^ The in vivo data demonstrated that inducible expression of the full-length extracellular domain of human HRGβ1 in MDA-MB-435 cells reduced tumor volume and cell proliferation but increased apoptosis of cells injected at the mammary fat pad in nude mice. More importantly, HRGβ1 reduced the number of metastases observed by a spontaneous metastasis assay. Taken together, these data indicate that the full-length extracellular domain of human HRGβ1 has the net effect of inhibiting breast cancer metastasis. ^
Resumo:
One growth factor receptor commonly altered during prostate tumor progression is the epidermal growth factor receptor (EGFR). EGFR signaling regulates Erk1/2 phosphorylation through multiple mechanisms. We hypothesized that PKC isozymes play a role in EGFR-dependent signaling, and that through PKC isozyme selective inhibition, EGFR-dependent Erk1/2 activation can be attenuated in AICaP cells. ^ To test the hypothesis, PKC activation was induced by 12-O-tetradecanoyi-phorbol-13-acetate (TPA) in PC-3 cells. As a result, Erk1/2 was activated similarly to what was observed upon EGF stimulation. EGF-induced Erk1/2 activation in PC-3 cells was PKC-dependent, as demonstrated through use of a selective PKC inhibitor, GF109203X. This provides evidence for PKC regulatory control over Erk1/2 signaling downstream of EGFR. Next, we demonstrated that when PKC was inhibited by GF109203X, EGF-stimulated Erk1/2 activation was inhibited in PC-3, but not DU145 cells. TPA-stimulated Erk1/2 activation was EGFR-dependent in both DU145 and PC-3 cells, demonstrated through abrogation of Erk1/2 activation by a selective EGFR inhibitor AG1478. These data support PKC control at or upstream of EGFR in AICaP cells. We observed that interfering with ligand/EGFR binding abrogated Erk1/2 signaling in TPA-stimulated cells, revealing a role for PKC upstream of EGFR. ^ Next, we determined which PKC isozymes might be responsible for Erk1/2 regulation. We first determined that human AICaP cell lines express the same PKC isozymes as those observed in clinical prostate cancer specimens (α, ϵ, &zgr;, ι and PKD). Isozyme-selective methods were employed to characterize discrete PKC isozyme function in EGFR-dependent Erk1/2 activation. Pharmacologic inhibitors implicated PKCα in TPA-induced EGFR-dependent Erk1/2 activation in both PC-3 and DU145 cells. Further, the cPKC-specific inhibitor, Gö6976 decreased viablilty of DU145 cells, providing evidence that PKCα is necessary for growth and survival. Finally, resveratrol, a phytochemical with strong cancer therapeutic potential inhibited Erk1/2 activation, and this correlated with selective inhibition of PKCα. These results demonstrate that PKC regulates pathways critical to progression of CaP cells, including those mediated by EGFR. Thus, PKC isozyme-selective targeting is an attractive therapeutic strategy, and understanding the role of specific PKC isozymes in CaP cell growth and survival may aid in development of effective, non-toxic PKC-targeted therapies. ^
Resumo:
Autophagy is an evolutionarily conserved process that functions to maintain homeostasis and provides energy during nutrient deprivation and environmental stresses for the survival of cells by delivering cytoplasmic contents to the lysosomes for recycling and energy generation. Dysregulation of this process has been linked to human diseases including immune disorders, neurodegenerative muscular diseases and cancer. Autophagy is a double edged sword in that it has both pro-survival and pro-death roles in cancer cells. Its cancer suppressive roles include the clearance of damaged organelles, which could otherwise lead to inflammation and therefore promote tumorigenesis. In its pro-survival role, autophagy allows cancer cells to overcome cytotoxic stresses generated the cancer environment or cancer treatments such as chemotherapy and evade cell death. A better understanding of how drugs that perturb autophagy affect cancer cell signaling is of critical importance toimprove the cancer treatment arsenal. In order to gain insights in the relationship between autophagy and drug treatments, we conducted a high-throughput drug screen to identify autophagy modulators. Our high-throughput screen utilized image based fluorescent microscopy for single cell analysis to identify chemical perturbants of the autophagic process. Phenothiazines emerged as the largest family of drugs that alter the autophagic process by increasing LC3-II punctae levels in different cancer cell lines. In addition, we observed multiple biological effects in cancer cells treated with phenothiazines. Those antitumorigenic effects include decreased cell migration, cell viability, and ATP production along with abortive autophagy. Our studies highlight the potential role of phenothiazines as agents for combinational therapy with other chemotherapeutic agents in the treatment of different cancers.
Resumo:
The p53 gene is known to be one of the most commonly mutated genes in human cancers. Many squamous cell carcinomas of the head and neck (SCCHNs) have been shown to contain nonfunctional p53 as well. The use of p53-mediated gene therapy to treat such cancers has become an intensive area of research. Although there have been varied treatment responses to p53 gene therapy, the role that endogenous p53 status plays in this response has not been thoroughly examined. Because of this, the hypothesis of this study examined the role that the endogenous p53 status of cells plays in their response to p53 gene therapy. To test this, an adenoviral vector containing p53 (p53FAd) was administered to three squamous cell carcinoma lines with varied endogenous p53. The SCC9 cell line demonstrates no p53 protein expression, the SCC4 cell line displays overexpression of a mutant p53 protein, and the 1986LN cell line displays low to no expression of wild-type p53 protein as a consequence of human papillomavirus infection. After treatment with p53FAd, the cells were examined for evidence of exogenous p53 expression, growth suppression, alterations in cellular proteins, G1 growth arrest, apoptosis, and differentiation state. Each cell line exhibited exogenous p53 protein. Growth suppression was seen most prominently in the SCC9 cells, to some extent in the 1986LN cells, and little was seen with the SCC4 cells. WAF1/p21 protein was induced in all three cell lines, while PCNA, bcl-2, and bax expression was not significantly affected in any of the lines. Apoptosis developed first in SCC9 cells, next in 1986LN cells, with little seen in the SCC4 cells. The SCC9 line was the only line to show significant GI growth arrest. No significant differences were observed in the overall expression of differentiation markers, aside from increased keratin 13 mRNA levels in all three lines indicating a possible tendency toward differentiation. This study indicates that the endogenous p53 status of squamous cell carcinomas appears to play a critical role in determining the response to p53 adenoviral gene therapy. ^