913 resultados para C-jun Kinase


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The balance between the inductive signals and endogenous anti-apoptotic mechanisms determines whether or not programmed cell death occurs. The widely expressed inhibitor of apoptosis gene family includes three closely related mammalian proteins: c-IAP1, c-IAP2, and hILP. The anti-apoptotic properties of these proteins have been linked to caspase inhibition. Here we show that one member of this group, hILP, inhibits interleukin-1β-converting enzyme-induced apoptosis via a mechanism dependent on the selective activation of c-Jun N-terminal kinase 1. These data demonstrate that apoptosis can be inhibited by an endogenous cellular protein by a mechanism that requires the activation of a single member of the mitogen-activating protein kinase family.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Apoptosis is a highly regulated form of cell death, characterized by distinctive features such as cellular shrinkage and nuclear condensation. We demonstrate here that proteolytic activation of hPAK65, a p21-activated kinase, induces morphological changes and elicits apoptosis. hPAK65 is cleaved both in vitro and in vivo by caspases at a single site between the N-terminal regulatory p21-binding domain and the C-terminal kinase domain. The C-terminal cleavage product becomes activated, with a kinetic profile that parallels caspase activation during apoptosis. This C-terminal hPAK65 fragment also activates the c-Jun N-terminal kinase pathway in vivo. Microinjection or transfection of this truncated hPAK65 causes striking alterations in cellular and nuclear morphology, which subsequently promotes apoptosis in both CHO and Hela cells. Conversely, apoptosis is delayed in cells expressing a dominant-negative form of hPAK65. These findings provide a direct evidence that the activated form of hPAK65 generated by caspase cleavage is a proapoptotic effector that mediates morphological and biochemical changes seen in apoptosis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Genetic studies have identified Drosophila Naked Cuticle (Nkd) as an antagonist of the canonical Wnt/β-catenin signaling pathway, but its mechanism of action remains obscure [Zeng, W., Wharton, K. A., Jr., Mack, J. A., Wang, K., Gadbaw, M., et al. (2000) Nature (London) 403, 789–795]. Here we have cloned a cDNA encoding a mammalian homolog of Drosophila Nkd, mNkd, and demonstrated that mNkd interacts directly with Dishevelled. Dishevelled is an intracellular mediator of both the canonical Wnt pathway and planar cell polarity (PCP) pathway. Activation of the c-Jun-N-terminal kinase has been implicated in the PCP pathway. We showed that mNkd acts in a cell-autonomous manner not only to inhibit the canonical Wnt pathway but also to stimulate c-Jun-N-terminal kinase activity. Expression of mNkd disrupted convergent extension in Xenopus, consistent with a role for mNkd in the PCP pathway. These data suggest that mNkd may act as a switch to direct Dishevelled activity toward the PCP pathway, and away from the canonical Wnt pathway.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Epstein–Barr virus encodes integral membrane proteins LMP1 and LMP2A in transformed lymphoblastoid cell lines. We now find that LMP1 associates with the cell cytoskeleton through a tumor necrosis factor receptor-associated factor-interacting domain, most likely mediated by tumor necrosis factor receptor-associated factor 3. LMP1 is palmitoylated, and the transmembrane domains associate with lipid rafts. Mutation of LMP1 cysteine-78 abrogates palmitoylation but does not affect raft association or NF-κB or c-Jun N-terminal kinase activation. LMP2A also associates with rafts and is palmitoylated but does not associate with the cell cytoskeleton. The associations of LMP1 and LMP2A with rafts and of LMP1 with the cell cytoskeleton are likely to effect interactions with cell proteins involved in shape, motility, signal transduction, growth, and survival.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Atherosclerosis preferentially occurs in areas of turbulent flow and low fluid shear stress, whereas laminar flow and high shear stress are atheroprotective. Inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and IL-1 stimulate expression of endothelial cell (EC) genes that may promote atherosclerosis. TNF-α and IL-1 regulate gene expression in ECs, in part, by stimulating mitogen-activated protein kinases (MAPK), which phosphorylate transcription factors. We hypothesized that steady laminar flow inhibits cytokine-mediated activation of MAPK in EC. To test this hypothesis, we determined the effects of flow (shear stress = 12 dynes/cm2) on TNF-α and IL-1-stimulated activity of three MAPK in human umbilical vein ECs (HUVEC): extracellular signal-regulated kinase (ERK1/2), p38, and c-Jun N-terminal kinase (JNK). Flow alone stimulated ERK1/2 and p38 activity but decreased JNK activity compared with static controls. TNF-α or IL-1 alone activated ERK1/2, p38, and JNK maximally at 15 min in HUVEC. Preexposing HUVEC for 10 min to flow inhibited TNF-α and IL-1 activation of JNK by 46% and 49%, respectively, but had no significant effect on ERK1/2 or p38 activation. Incubation of HUVEC with PD98059, which inhibits flow-mediated ERK1/2 activation, prevented flow from inhibiting cytokine activation of JNK. Phorbol 12-myristate 13-acetate, which strongly activates ERK1/2, also inhibited TNF-α activation of JNK. These findings indicate that fluid shear stress inhibits TNF-α-mediated signaling events in HUVEC via the activation of the ERK1/2 signaling pathway. Inhibition of TNF-α signal transduction represents a mechanism by which steady laminar flow may exert atheroprotective effects on the endothelium.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Kinesin molecular motor proteins are responsible for many of the major microtubule-dependent transport pathways in neuronal and non-neuronal cells. Elucidating the transport pathways mediated by kinesins, the identity of the cargoes moved, and the nature of the proteins that link kinesin motors to cargoes are areas of intense investigation. Kinesin-II recently was found to be required for transport in motile and nonmotile cilia and flagella where it is essential for proper left-right determination in mammalian development, sensory function in ciliated neurons, and opsin transport and viability in photoreceptors. Thus, these pathways and proteins may be prominent contributors to several human diseases including ciliary dyskinesias, situs inversus, and retinitis pigmentosa. Kinesin-I is needed to move many different types of cargoes in neuronal axons. Two candidates for receptor proteins that attach kinesin-I to vesicular cargoes were recently found. One candidate, sunday driver, is proposed to both link kinesin-I to an unknown vesicular cargo and to bind and organize the mitogen-activated protein kinase components of a c-Jun N-terminal kinase signaling module. A second candidate, amyloid precursor protein, is proposed to link kinesin-I to a different, also unknown, class of axonal vesicles. The finding of a possible functional interaction between kinesin-I and amyloid precursor protein may implicate kinesin-I based transport in the development of Alzheimer's disease.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To identify proteins that regulate the transcriptional activity of c-Jun, we have used the yeast two-hybrid screen to detect mammalian polypeptides that might interact functionally with the N-terminal segment of c-Jun, a known regulatory region. Among the proteins identified is a short form of Stat3 (designated Stat3 beta). Stat3 beta is missing the 55 C-terminal amino acid residues of the long form (Stat3 alpha) and has 7 additional amino acid residues at its C terminus. In the absence of added cytokines, expression of Stat3 beta (but not Stat3 alpha) in transfected cells activated a promoter containing the interleukin 6 responsive element of the rat alpha 2-macroglobulin gene; coexpression of Stat3 beta and c-Jun led to enhanced cooperative activation of the promoter. Nuclear extracts of cells transfected with a Stat3 beta expression plasmid formed a complex with an oligonucleotide containing a Stat3 binding site, whereas extracts of cells transfected with a Stat3 alpha plasmid did not. We conclude that there is a short form of Stat3 (Stat3 beta), that Stat3 beta is transcriptionally active under conditions where Stat3 alpha is not, and that Stat3 beta and c-Jun are capable of cooperative activation of certain promoters.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Sphingosylphosphocholine (SPC) is the deacylated derivative of sphingomyelin known to accumulate in neuropathic Niemann-Pick disease type A. SPC is a potent mitogen that increases intracellular free Ca2+ and free arachidonate through pathways that are only partly protein kinase C-dependent. Here we show that SPC increased specific DNA-binding activity of transcription activator AP-1 in electrophoretic mobility-shift assays. Increased DNA-binding activity of AP-1 was detected after only 1-3 min, was maximal after 6 hr, and remained elevated at 12-24 hr. c-Fos was found to be a component of the AP-1 complex. Northern hybridization revealed an increase in c-fos transcripts after 30 min. Since the increase in AP-1 binding activity preceded the increase in c-fos mRNA, posttranslational modifications may be important in mediating the early SPC-induced increases in AP-1 DNA-binding activity. Western analysis detected increases in nuclear c-Jun and c-Fos proteins following SPC treatment. SPC also transactivated a reporter gene construct through the AP-1 recognition site, indicating that SPC can regulate the expression of target genes. Thus, SPC-induced cell proliferation may result from activation of AP-1, linking signal transduction by SPC to gene expression. Since the expression of many proteins with diverse functions is known to be regulated by AP-1, SPC-induced activation of AP-1 may contribute to the pathophysiology of Niemann-Pick disease.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fetal epithelium retains the ability to re-epithelialize a wound in organotypic culture in a manner not dependent on the presence of underlying dermal substrata. This capacity is lost late in the third trimester of gestation or after embryonic day 17 (E-17) in the rat such that embryonic day 19 (E-19) wounds do not re-epithelialize. Moreover, wounds created in E-17 fetuses in utero heal in a regenerative, scar-free fashion. To investigate the molecular events regulating re-epithelialization in fetal skin, the wound-induced expression profile and tissue localization of activator protein 1 (AP-1) transcription factors c-Fos and c-Jun was characterised in E-17 and E-19 skin using organotypic fetal cultures. The involvement of mitogen-activated protein kinase (MAPK) signaling in mediating wound-induced transcription factor expression and wound re-epithelialization was assessed, with the effect of wounding on the expression of keratinocyte differentiation markers determined. Our results show that expression of AP-1 transcription factors was induced immediately by wounding and localized predominantly to the epidermis in E-17 and E-19 skin. c-fos and c-jun induction was transient in E-17 skin with MAPK-dependent c-fos expression necessary for the re-epithelialization of an excisional wound in organotypic culture. In E-19 skin, AP-11 expression persisted beyond 12 h post-wounding, and marked upregulation of the keratinocyte differentiation markers keratin 10 and loricrin was observed. No such changes in the expression of keratin 10 or loricrin occurred in E-17 skin. These findings indicate that re-epithelialization in fetal skin is regulated by wound-induced AP-1 transcription factor expression via MAPK and the differentiation status of keratinocytes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report in, this study that activation of the JNK by the growth factor, CSF-1 is critical for macrophage development, proliferation, and survival. Inhibition of JNK with two distinct classes of inhibitors, the pharmacological agent SP600125, or the peptide D-JNKI1 resulted in cell cycle inhibition with an arrest at the G(2)/M transition and subsequent apoptosis. JNK inhibition resulted in decreased expression of CSF-1R (c-fins) and Bcl-x(L) mRNA in mature macrophages and repressed CSF-1-dependent differentiation of bone marrow cells to macrophages. Macrophage sensitivity to JNK inhibitors may be linked to phosphorylation of the PU.1 transcription factor. Inhibition of JNK disrupted PUA binding to an element in the c-fins gene promoter and decreased promoter activity. Promoter activity could be restored by overexpression of PUA. A comparison of expression profiles of macrophages with 22 other tissue types showed that genes that signal JNK activation downstream of tyrosine kinase receptors, such as focal adhesion kinase, Nck-interacting kinase, and Rac1 and scaffold proteins are highly expressed in macrophages relative to other tissues. This pattern of expression may underlie the novel role of JNK in macrophages.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

FRET (fluorescence resonance energy transfer) and co-immunoprecipitation studies confirmed the capacity of beta-arrestin 2 to self-associate. Amino acids potentially involved in direct protein-protein interaction were identified via combinations of spot-immobilized peptide arrays and mapping of surface exposure. Among potential key amino acids, Lys(285), Arg(286) and Lys(295) are part of a continuous surface epitope located in the polar core between the N- and C-terminal domains. Introduction of K285A/R286A mutations into beta-arrestin 2-eCFP (where eCFP is enhanced cyan fluorescent protein) and beta-arrestin 2-eYFP (where eYFP is enhanced yellow fluorescent protein) constructs substantially reduced FRET, whereas introduction of a K295A mutation had a more limited effect. Neither of these mutants was able to promote beta2-adrenoceptor-mediated phosphorylation of the ERK1/2 (extracellular-signal-regulated kinase 1/2) MAPKs (mitogen-activated protein kinases). Both beta-arrestin 2 mutants displayed limited capacity to co-immunoprecipitate ERK1/2 and further spot-immobilized peptide arrays indicated each of Lys(285), Arg(286) and particularly Lys(295) to be important for this interaction. Direct interactions between beta-arrestin 2 and the beta2-adrenoceptor were also compromised by both K285A/R286A and K295A mutations of beta-arrestin 2. These were not non-specific effects linked to improper folding of beta-arrestin 2 as limited proteolysis was unable to distinguish the K285A/R286A or K295A mutants from wild-type beta-arrestin 2, and the interaction of beta-arrestin 2 with JNK3 (c-Jun N-terminal kinase 3) was unaffected by the K285A/R286A or L295A mutations. These results suggest that amino acids important for self-association of beta-arrestin 2 also play an important role in the interaction with both the beta2-adrenoceptor and the ERK1/2 MAPKs. Regulation of beta-arrestin 2 self-association may therefore control beta-arrestin 2-mediated beta2-adrenoceptor-ERK1/2 MAPK signalling.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Raf kinase inhibitory protein (RKIP) is a physiologic inhibitor of c-RAF kinase and nuclear factor ?B signaling that represses tumor invasion and metastasis. Glycogen synthase kinase-3ß (GSK3ß) suppresses tumor progression by downregulating multiple oncogenic pathways including Wnt signaling and cyclin D1 activation. Here, we show that RKIP binds GSK3 proteins and maintains GSK3ß protein levels and its active form. Depletion of RKIP augments oxidative stress-mediated activation of the p38 mitogen activated protein kinase, which, in turn, inactivates GSK3ß by phosphorylating it at the inhibitory T390 residue. This pathway de-represses GSK3ß inhibition of oncogenic substrates causing stabilization of cyclin D, which induces cell-cycle progression and ß-catenin, SNAIL, and SLUG, which promote epithelial to mesenchymal transition. RKIP levels in human colorectal cancer positively correlate with GSK3ß expression. These findings reveal the RKIP/GSK3 axis as both a potential therapeutic target and a prognosis-based predictor of cancer progression.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Reactive oxygen species including H2O2 activate an array of intracellular signalling cascades that are closely associated with cell death and cell survival pathways. The human neuroblastoma SH-SY5Y cell line is widely used as model cell system for studying neuronal cell death induced by oxidative stress. However, at present very little is known about the signalling pathways activated by H2O2 in SH-SY5Y cells. Therefore, in this study we have investigated the effect of H2(O2 on extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (p38 MAPK) and protein kinase B (PKB) activation in undifferentiated and differentiated SH-SY5Y cells. H2O2 stimulated time and concentration increases in ERK1/2, JNK and PKB phosphorylation in undifferentiated and differentiated SH-SY5Y cells. No increases in p38 MAPK phosphorylation were observed following H2O2 treatment. The phosphatidylinositol 3-kinase (PI-3K) inhibitors wortmannin and LY 294002 ((2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one) inhibited H2O2-induced increases in ERK1/2 and PKB phosphorylation. Furthermore, H2O2-mediated increases in ERK1/2 activation were sensitive to the MAPK kinase 1 (MEK1) inhibitor PD 98059 (2'-amino-3'-methoxyflavone), whereas JNK responses were blocked by the JNK inhibitor SP 600125 (anthra[1-9-cd]pyrazol-6(2H)-one). Treatment of SH-SY5Y cells with H2O2 (1 mM; 16 h) significantly increased the release of lactate dehydrogenase (LDH) into the culture medium indicative of a decrease in cell viability. Pre-treatment with wortmannin, SP 600125 or SB 203580 (4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H-imidazole; p38 MAPK inhibitor) had no effect on H2O2-induced LDH release from undifferentiated or differentiated SH-SY5Y cells. In contrast, PD 98059 and LY 294002 significantly decreased H2O2-induced cell death in both undifferentiated and differentiated SH-SY5Y cells. In conclusion, we have shown that H2O2 stimulates robust increases in ERK1/2, JNK and PKB in undifferentiated and differentiated SH-SY5Y cells. Furthermore, the data presented clearly suggest that inhibition of the ERK1/2 pathway protects SH-SY5Y cells from H2O2-induced cell death.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aims/hypothesis
Intra-retinal extravasation and modification of LDL have been implicated in diabetic retinopathy: autophagy may mediate these effects.
Methods
Immunohistochemistry was used to detect autophagy marker LC3B in human and murine diabetic and non-diabetic retinas. Cultured human retinal capillary pericytes (HRCPs) were treated with in vitro-modified heavily-oxidised glycated LDL (HOG-LDL) vs native LDL (N-LDL) with or without autophagy modulators: green fluorescent protein–LC3 transfection; small interfering RNAs against Beclin-1, c-Jun NH(2)-terminal kinase (JNK) and C/EBP-homologous protein (CHOP); autophagy inhibitor 3-MA (5 mmol/l) and/or caspase inhibitor Z-VAD-fmk (100 μmol/l). Autophagy, cell viability, oxidative stress, endoplasmic reticulum stress, JNK activation, apoptosis and CHOP expression were assessed by western blots, CCK-8 assay and TUNEL assay. Finally, HOG-LDL vs N-LDL were injected intravitreally to STZ-induced diabetic vs control rats (yielding 50 and 200 mg protein/l intravitreal concentration) and, after 7 days, retinas were analysed for ER stress, autophagy and apoptosis.
Results
Intra-retinal autophagy (LC3B staining) was increased in diabetic vs non-diabetic humans and mice. In HRCPs, 50 mg/l HOG-LDL elicited autophagy without altering cell viability, and inhibition of autophagy decreased survival. At 100–200 mg/l, HOG-LDL caused significant cell death, and inhibition of either autophagy or apoptosis improved survival. Further, 25–200 mg/l HOG-LDL dose-dependently induced oxidative and ER stress. JNK activation was implicated in autophagy but not in apoptosis. In diabetic rat retina, 50 mg/l intravitreal HOG-LDL elicited autophagy and ER stress but not apoptosis; 200 mg/l elicited greater ER stress and apoptosis.
Conclusions
Autophagy has a dual role in diabetic retinopathy: under mild stress (50 mg/l HOG-LDL) it is protective; under more severe stress (200 mg/l HOG-LDL) it promotes cell death.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Asymptomatic Plasmodium infection carriers represent a major threat to malaria control worldwide as they are silent natural reservoirs and do not seek medical care. There are no standard criteria for asymptomatic Plasmodium infection; therefore, its diagnosis relies on the presence of the parasite during a specific period of symptomless infection. The antiparasitic immune response can result in reduced Plasmodium sp. load with control of disease manifestations, which leads to asymptomatic infection. Both the innate and adaptive immune responses seem to play major roles in asymptomatic Plasmodium infection; T regulatory cell activity (through the production of interleukin- 10 and transforming growth factor-β) and B-cells (with a broad antibody response) both play prominent roles. Furthermore, molecules involved in the haem detoxification pathway (such as haptoglobin and haeme oxygenase-1) and iron metabolism (ferritin and activated c-Jun N-terminal kinase) have emerged in recent years as potential biomarkers and thus are helping to unravel the immune response underlying asymptomatic Plasmodium infection. The acquisition of large data sets and the use of robust statistical tools, including network analysis, associated with welldesigned malaria studies will likely help elucidate the immune mechanisms responsible for asymptomatic infection.