961 resultados para Brain Stem Neoplasms
Resumo:
Some modifying factors may determine the risk of brain tumors. Until now, it could not be attempted to identify people at risk and also to improve significantly disease progression. Current therapy consists of surgical resection, followed by radiation therapy and chemotherapy. Despite of these treatments, the prognosis for patients is poor. In this review, we highlight general aspects concerning genetic alterations in brain tumors, namely astrocytomas, glioblastomas, oligodendrogliomas, medulloblastomas and ependymomas. The influence of these genetic alterations in patients' prognosis is discussed. Mutagen sensivity is associated with cancer risk. The convincing studies that linked DNA damages and DNA repair alterations with brain tumors are also described. Another important modifying factor is immunity. General immune response against cancer, tumor microenvironment and immune response, mechanisms of tumor escape, CNS tumor immunology, immune defects that impair anti-tumor systemic immunity in brain tumor patients and local immunosuppressive factors within CNS are also reviewed. New hope to treatment perspectives, as dendritic-cell-based vaccines is summarized too. Concluding, it seems well established that there is association between brain tumor risk and mutagen sensivity, which is highly heritable. Primary brain tumors cause depression in systemic host immunity; local immunosuppressive factors and immunological characteristics of tumor cells may explain the poor prognosis and DNA damages responses can alert immune system. However, it is necessary to clarify if individuals with both constitutional defects in immune functions and genetic instability have higher risk of developing brain tumors. Cytogenetic prospective studies and gene copy number variations analysis also must be performed in peripheral lymphocytes from brain tumor patients. © 2011 Bentham Science Publishers Ltd.
Resumo:
The diffusible messenger NO plays multiple roles in neuroprotection, neurodegeneration, and brain plasticity. Argininosuccinate synthase (AS) is a ubiquitous enzyme in mammals and the key enzyme of the NO-citrulline cycle, because it provides the substrate L-arginine for subsequent NO synthesis by inducible, endothelial, and neuronal NO synthase (NOS). Here, we provide evidence for the participation of AS and of the NO-citrulline cycle in the progress of differentiation of neural stem cells (NSC) into neurons, astrocytes, and oligodendrocytes. AS expression and activity and neuronal NOS expression, as well as L-arginine and NOx production, increased along neural differentiation, whereas endothelial NOS expression was augmented in conditions of chronic NOS inhibition during differentiation, indicating that this NOS isoform is amenable to modulation by extracellular cues. AS and NOS inhibition caused a delay in the progress of neural differentiation, as suggested by the decreased percentage of terminally differentiated cells. On the other hand, BDNF reversed the delay of neural differentiation of NSC caused by inhibition of NOx production. Alikely cause is the lack of NO, which up-regulated p75 neurotrophin receptor expression, a receptor required for BDNF-induced differentiation of NSC. We conclude that the NO-citrulline cycle acts together with BDNF for maintaining the progress of neural differentiation.
Resumo:
We aimed to induce neural stem (NSC) and progenitor cells (NPC) from human placental tissues.
Resumo:
The inflammatory response is a critical component of ischemic stroke. In addition to its physiological role, the mechanisms behind transendothelial recruitment of immune cells also offer a unique therapeutic opportunity for translational stem cell therapies. Recent reports have demonstrated homing of neural stem cells (NSC) into the injured brain areas after intravascular delivery. However, the mechanisms underlying the process of transendothelial recruitment remain largely unknown. Here we describe the critical role of the chemokine CCL2 and its receptor CCR2 in targeted homing of NSC after ischemia.
Resumo:
Stem cell transplantation promises new hope for the treatment of stroke although significant questions remain about how the grafted cells elicit their effects. One hypothesis is that transplanted stem cells enhance endogenous repair mechanisms activated after cerebral ischaemia. Recognizing that bilateral reorganization of surviving circuits is associated with recovery after stroke, we investigated the ability of transplanted human neural progenitor cells to enhance this structural plasticity. Our results show the first evidence that human neural progenitor cell treatment can significantly increase dendritic plasticity in both the ipsi- and contralesional cortex and this coincides with stem cell-induced functional recovery. Moreover, stem cell-grafted rats demonstrated increased corticocortical, corticostriatal, corticothalamic and corticospinal axonal rewiring from the contralesional side; with the transcallosal and corticospinal axonal sprouting correlating with functional recovery. Furthermore, we demonstrate that axonal transport, which is critical for both proper axonal function and axonal sprouting, is inhibited by stroke and that this is rescued by the stem cell treatment, thus identifying another novel potential mechanism of action of transplanted cells. Finally, we established in vitro co-culture assays in which these stem cells mimicked the effects observed in vivo. Through immunodepletion studies, we identified vascular endothelial growth factor, thrombospondins 1 and 2, and slit as mediators partially responsible for stem cell-induced effects on dendritic sprouting, axonal plasticity and axonal transport in vitro. Thus, we postulate that human neural progenitor cells aid recovery after stroke through secretion of factors that enhance brain repair and plasticity.