907 resultados para Borel Sets


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, relevant results about the determination of (k,t)-regular sets, using the main eigenvalues of a graph, are reviewed and some results about the determination of (0,2)-regular sets are introduced. An algorithm for that purpose is also described. As an illustration, this algorithm is applied to the determination of maximum matchings in arbitrary graphs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cloud computing is increasingly being adopted in different scenarios, like social networking, business applications, scientific experiments, etc. Relying in virtualization technology, the construction of these computing environments targets improvements in the infrastructure, such as power-efficiency and fulfillment of users’ SLA specifications. The methodology usually applied is packing all the virtual machines on the proper physical servers. However, failure occurrences in these networked computing systems can induce substantial negative impact on system performance, deviating the system from ours initial objectives. In this work, we propose adapted algorithms to dynamically map virtual machines to physical hosts, in order to improve cloud infrastructure power-efficiency, with low impact on users’ required performance. Our decision making algorithms leverage proactive fault-tolerance techniques to deal with systems failures, allied with virtual machine technology to share nodes resources in an accurately and controlled manner. The results indicate that our algorithms perform better targeting power-efficiency and SLA fulfillment, in face of cloud infrastructure failures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rough Set Data Analysis (RSDA) is a non-invasive data analysis approach that solely relies on the data to find patterns and decision rules. Despite its noninvasive approach and ability to generate human readable rules, classical RSDA has not been successfully used in commercial data mining and rule generating engines. The reason is its scalability. Classical RSDA slows down a great deal with the larger data sets and takes much longer times to generate the rules. This research is aimed to address the issue of scalability in rough sets by improving the performance of the attribute reduction step of the classical RSDA - which is the root cause of its slow performance. We propose to move the entire attribute reduction process into the database. We defined a new schema to store the initial data set. We then defined SOL queries on this new schema to find the attribute reducts correctly and faster than the traditional RSDA approach. We tested our technique on two typical data sets and compared our results with the traditional RSDA approach for attribute reduction. In the end we also highlighted some of the issues with our proposed approach which could lead to future research.