851 resultados para Bone Mineral Density (BMD)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Developing a novel technique for the efficient, noninvasive clinical evaluation of bone microarchitecture remains both crucial and challenging. The trabecular bone score (TBS) is a new gray-level texture measurement that is applicable to dual-energy X-ray absorptiometry (DXA) images. Significant correlations between TBS and standard 3-dimensional (3D) parameters of bone microarchitecture have been obtained using a numerical simulation approach. The main objective of this study was to empirically evaluate such correlations in anteroposterior spine DXA images. Thirty dried human cadaver vertebrae were evaluated. Micro-computed tomography acquisitions of the bone pieces were obtained at an isotropic resolution of 93μm. Standard parameters of bone microarchitecture were evaluated in a defined region within the vertebral body, excluding cortical bone. The bone pieces were measured on a Prodigy DXA system (GE Medical-Lunar, Madison, WI), using a custom-made positioning device and experimental setup. Significant correlations were detected between TBS and 3D parameters of bone microarchitecture, mostly independent of any correlation between TBS and bone mineral density (BMD). The greatest correlation was between TBS and connectivity density, with TBS explaining roughly 67.2% of the variance. Based on multivariate linear regression modeling, we have established a model to allow for the interpretation of the relationship between TBS and 3D bone microarchitecture parameters. This model indicates that TBS adds greater value and power of differentiation between samples with similar BMDs but different bone microarchitectures. It has been shown that it is possible to estimate bone microarchitecture status derived from DXA imaging using TBS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To analyse whether bone mineral density (BMD) assessment is required in postmenopausal women presenting with low trauma vertebral fracture. Methods: Women with vertebral fracture diagnosed over a 10 year period were recruited from our database. The following were excluded: (a) patients with high energy trauma; (b) patients with malignancies; (c) patients with a metabolic bone disease other than osteoporosis. All postmenopausal women were included in whom BMD had been evaluated at both the lumbar spine and femoral neck by dual energy x ray absorptiometry during the six months after the diagnosis. Patients with a potential cause of osteoporosis other than age and menopause were not considered. A total of 215 patients were identified. Results: The mean (SD) age of the patients was 65.9 (6.9) years. BMD at the lumbar spine was 0.725 (0.128) g/cm2 and the T score was ¿2.94 (1.22); BMD at the femoral neck was 0.598 (0.095) g/cm2 and the T score was ¿2.22 (0.89). The BMD of the patients was significantly lower than that of the general population at both the lumbar spine and femoral neck. When the lowest value of the two analysed zones was considered, six patients (3%) showed a normal BMD, 51 (23.5%) osteopenia, and 158 (73.5%) osteoporosis. The prevalence of osteoporosis at the femoral neck increased with age; it was 25% in patients under 60, 35% in patients aged 60¿70, and 60% in patients over 70. Conclusion: These results indicate that bone densitometry is not required in postmenopausal women with clinically diagnosed vertebral fractures if it is performed only to confirm the existence of a low BMD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Age-related changes in lumbar vertebral microarchitecture are evaluated, as assessed by trabecular bone score (TBS), in a cohort of 5,942 French women. The magnitude of TBS decline between 45 and 85 years of age is piecewise linear in the spine and averaged 14.5 %. TBS decline rate increases after 65 years by 50 %. INTRODUCTION: This study aimed to evaluate age-related changes in lumbar vertebral microarchitecture, as assessed by TBS, in a cohort of French women aged 45-85 years. METHODS: An all-comers cohort of French Caucasian women was selected from two clinical centers. Data obtained from these centers were cross-calibrated for TBS and bone mineral density (BMD). BMD and TBS were evaluated at L1-L4 and for all lumbar vertebrae combined using GE-Lunar Prodigy densitometer images. Weight, height, and body mass index (BMI) also were determined. To validate our all-comers cohort, the BMD normative data of our cohort and French Prodigy data were compared. RESULTS: A cohort of 5,942 French women aged 45 to 85 years was created. Dual-energy X-ray absorptiometry normative data obtained for BMD from this cohort were not significantly different from French prodigy normative data (p = 0.15). TBS values at L1-L4 were poorly correlated with BMI (r = -0.17) and weight (r = -0.14) and not correlated with height. TBS values obtained for all lumbar vertebra combined (L1, L2, L3, L4) decreased with age. The magnitude of TBS decline at L1-L4 between 45 and 85 years of age was piecewise linear in the spine and averaged 14.5 %, but this rate increased after 65 years by 50 %. Similar results were obtained for other region of interest in the lumbar spine. As opposed to BMD, TBS was not affected by spinal osteoarthrosis. CONCLUSION: The age-specific reference curve for TBS generated here could therefore be used to help clinicians to improve osteoporosis patient management and to monitor microarchitectural changes related to treatment or other diseases in routine clinical practice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To evaluate, during the first postoperative year in obese pre-menopausal women, the effects of laparoscopic gastric banding on calcium and vitamin D metabolism, the potential modifications of bone mineral content and bone mineral density, and the risk of development of secondary hyperparathyroidism. SUBJECTS: Thirty-one obese pre-menopausal women aged between 25 and 52 y with a mean body mass index (BMI) of 43.6 kg/m(2), scheduled for gastric banding were included. Patients with renal, hepatic, metabolic and bone disease were excluded. METHODS: Body composition and bone mineral density (BMD) were measured at baseline, 6 and 12 months after gastric banding using dual-energy X-ray absorptiometry. Serum calcium, phosphate, alkaline phosphatase, aspartate aminotransferase, alanine aminotransferase, gamma-glutamyltransferase, bilirubin, urea, creatinine, uric acid, proteins, parathormone, vitamin D(3), IGF-1, IGF-BP3 and telopeptide, as well as urinary telopeptide, were measured at baseline and 1, 3, 6, 9 and 12 months after surgery. RESULTS: After 1 y vitamin D3 remained stable and PTH decreased by 12%, but the difference was not significant. Serum telopeptide C increased significantly by 100% (P<0.001). There was an initial drop of the IGF-BP3 during the first 6 months (P<0.05), but the reduction was no longer significant after 1 y. The BMD of cortical bone (femoral neck) decreased significantly and showed a trend of a positive correlation with the increase of telopeptides (P<0.06). The BMD of trabecular bone, at the lumbar spine, increased proportionally to the reduction of hip circumference and of body fat. CONCLUSION: There is no evidence of secondary hyperparathyroidism 1 y after gastric banding. Nevertheless biochemical bone markers show a negative remodelling balance, characterized by an increase of bone resorption. The serum telopeptide seems to be a reliable parameter, not affected by weight loss, to follow up bone turnover after gastroplasty.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Strontium ranelate appears to influence more than alendronate distal tibia bone microstructure as assessed by high-resolution peripheral quantitative computed tomography (HR-pQCT), and biomechanically relevant parameters as assessed by micro-finite element analysis (mu FEA), over 2 years, in postmenopausal osteoporotic women.Introduction Bone microstructure changes are a target in osteoporosis treatment to increase bone strength and reduce fracture risk.Methods Using HR-pQCT, we investigated the effects on distal tibia and radius microstructure of strontium ranelate (SrRan; 2 g/day) or alendronate (70 mg/week) for 2 years in postmenopausal osteoporotic women. This exploratory randomized, double-blind trial evaluated HR-pQCT and FEA parameters, areal bone mineral density (BMD), and bone turnover markers.Results In the intention-to-treat population (n = 83, age: 64 +/- 8 years; lumbar T-score: -2.8 +/- 0.8 [DXA]), distal tibia Cortical Thickness (CTh) and Density (DCort), and cancellous BV/TV increased by 6.3%, 1.4%, and 2.5%, respectively (all P < 0.005), with SrRan, but not with alendronate (0.9%, 0.4%, and 0.8%, NS) (P < 0.05 for all above between-group differences). Difference for CTh evaluated with a distance transformation method was close to significance (P = 0.06). The estimated failure load increased with SrRan (+2.1%, P < 0.005), not with alendronate (-0.6%, NS) (between-group difference, P < 0.01). Cortical stress was lower with SrRan (P < 0.05); both treatments decreased trabecular stress. At distal radius, there was no between-group difference other than DCort (P < 0.05). Bone turnover markers decreased with alendronate; bALP increased (+21%) and serum-CTX-I decreased (-1%) after 2 years of SrRan (between-group difference at each time point for both markers, P < 0.0001). Both treatments were well tolerated.Conclusions Within the constraints of HR-pQCT method, and while a possible artefactual contribution of strontium cannot be quantified, SrRan appeared to influence distal tibia bone microstructure and FEA-determined biomechanical parameters more than alendronate. However, the magnitude of the differences is unclear and requires confirmation with another method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This case-control study assessed whether the trabecular bone score (TBS), determined from gray-level analysis of DXA images, might be of any diagnostic value, either alone or combined with bone mineral density (BMD), in the assessment of vertebral fracture risk among postmenopausal women with osteopenia. Of 243 postmenopausal Caucasian women, 50-80 years old, with BMD T-scores between -1.0 and -2.5, we identified 81 with osteoporosis-related vertebral fractures and compared them with 162 age-matched controls without fractures. Primary outcomes were BMD and TBS. For BMD, each incremental decrease in BMD was associated with an OR = 1.54 (95% CI = 1.17-2.03), and the AUC was 0.614 (0.550-0.676). For TBS, corresponding values were 2.53 (1.82-3.53) and 0.721 (0.660-0.777). The difference in the AUC for TBS vs. BMD was statistically significant (p = 0.020). The OR for (TBS + BMD) was 2.54 (1.86-3.47) and the AUC 0.732 (0.672-0.787). In conclusion, the TBS warrants a closer look to see whether it may be of clinical usefulness in the determination of fracture risk in postmenopausal osteopenic women.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dual-energy X-ray absorptiometry (DXA) measurement of bone mineral density (BMD) is the reference standard for diagnosing osteoporosis but does not directly reflect deterioration in bone microarchitecture. The trabecular bone score (TBS), a novel grey-level texture measurement that can be extracted from DXA images, predicts osteoporotic fractures independent of BMD. Our aim was to identify clinical factors that are associated with baseline lumbar spine TBS. In total, 29,407 women ≥50yr at the time of baseline hip and spine DXA were identified from a database containing all clinical results for the Province of Manitoba, Canada. Lumbar spine TBS was derived for each spine DXA examination blinded to clinical parameters and outcomes. Multiple linear regression and logistic regression (lowest vs highest tertile) was used to define the sensitivity of TBS to other risk factors associated with osteoporosis. Only a small component of the TBS measurement (7-11%) could be explained from BMD measurements. In multiple linear regression and logistic regression models, reduced lumbar spine TBS was associated with recent glucocorticoid use, prior major fracture, rheumatoid arthritis, chronic obstructive pulmonary disease, high alcohol intake, and higher body mass index. In contrast, recent osteoporosis therapy was associated with a significantly lower likelihood for reduced TBS. Similar findings were seen after adjustment for lumbar spine or femoral neck BMD. In conclusion, lumbar spine TBS is strongly associated with many of the risk factors that are predictive of osteoporotic fractures. Further work is needed to determine whether lumbar spine TBS can replace some of the clinical risk factors currently used in fracture risk assessment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We evaluated the longitudinal effects of anti-resorptive agents (534 treated women vs. 1,150 untreated) on lumbar spine bone mineral density (BMD) and trabecular bone score (TBS). TBS was responsive to treatment in women over age 50. The treatment-related increase in TBS was less than the increase in BMD, which is consistent with bone texture preservation. INTRODUCTION: In addition to inducing an increase in BMD, anti-resorptive agents also help to preserve bone architecture. TBS, a new gray-level texture measurement, correlates with 3D parameters of bone micro-architecture independent of BMD. Our objective was to evaluate the longitudinal effects of anti-resorptive agents on lumbar spine BMD and TBS. METHODS: Women (≥50 years), from the BMD program database for the province of Manitoba, Canada, who had not received any anti-resorptive drug prior to their initial dual X-ray absorptiometry (DXA) exam were divided into two groups: untreated, those without any anti-resorptive drug over the course of follow-up, and treated, those with a non-estrogen anti-resorptive drug (86 % bisphosphonates, 10 % raloxifene, and 4 % calcitonin). Lumbar spine TBS was calculated for each lumbar spine DXA examination. Changes in TBS and BMD between baseline and follow-up (mean follow-up 3.7 years), expressed in percentage per year, were compared between the two groups. RESULTS: A total of 1,150 untreated women and 534 treated women met the inclusion criteria. Only a weak correlation was seen between BMD and TBS in either group. Significant intergroup differences in BMD change and TBS change were observed over the course of follow-up (p < 0.001). Similar mean decreases in BMD and TBS (-0.36 %/year and -0.31 %/year, respectively) were seen for untreated subjects (both p < 0.001). Conversely, treated subjects exhibited a significant mean increase in BMD (+1.86 %/year, p < 0.002) and TBS (+0.20 %/year, p < 0.001). CONCLUSION: TBS is responsive to treatment with non-estrogen anti-resorptive drug therapy in women over age 50. The treatment-related increase in TBS is less than the increase in BMD, which is consistent with bone texture preservation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: « Osteo-Mobile Vaud » is a mobile osteoporosis (OP) screening program. The women > 60 years living in the region Vaud will be offered OP screening with new equipment installed in a bus. The main goal is to evaluate the fracture risk with the combination of clinical risk factors (CRF) and informations extracted by a single DXA: bone mineral density (BMD), vertebral fracture assessment (VFA), and micro-architecture (MA) evaluation. MA is yet evaluable in daily practice by the Trabecular Bone Score (TBS) measure. TBS is a novel grey-level texture measurement reflecting bone MA based on the use of experimental variograms of 2D projection images. TBS is very simple to obtain, by reanalyzing a lumbar DXA-scan. TBS has proven to have diagnosis and prognosis value, partially independent of CRF and BMD. A 55-years follow- up is planned. Method: The Osteo-Mobile Vaud cohort (1500 women, > 60 years, living in the region Vaud) started in July 2010. CRF for OP, lumbar spine and hip BMD, VFA by DXA and MA evaluation by TBS are recorded. Preliminary results are reported. Results: In July 31th, we evaluated 510 women: mean age 67 years, BMI 26 kg/m². 72 women had one or more fragility fractures, 39 had vertebral fracture (VFx) grade 2/3. TBS decreases with age (-0.005 / year, p<0.001), and with BMI (-0.011 per kg/m², p<0.001). Correlation between BMD and site matched TBS is low (r=0.4, p<0.001). For the lowest T-score BMD, odds ratio (OR, 95% CI) for VFx grade 2/3 and clinical OP Fx are 1.8 (1.1-2.9) and 2.3 (1.5-3.4). For TBS, age-, BMI- and BMD adjusted ORs (per SD decrease) for VFx grade 2/3 and clinical OP Fx are 1.9 (1.2-3.0) and 1.8 (1.2-2.7). The TBS added value was independent of lumbar spine BMD or the lowest T-score (femoral neck, total hip or lumbar spine). Conclusion: As in the already published studies, these preliminary results confirm the partial independence between BMD and TBS. More importantly, a combination of TBS and BMD may increase significantly the identification of women with prevalent OP Fx. For the first time we are able to have complementary information about fracture (VFA), density (BMD), and micro-architecture (TBS) from a simple, low ionizing radiation and cheap device: DXA. The value of such informations in a screening program will be evaluated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trabecular bone score (TBS) is a recently-developed analytical tool that performs novel grey-level texture measurements on lumbar spine dual X-ray absorptiometry (DXA) images, and thereby captures information relating to trabecular microarchitecture. In order for TBS to usefully add to bone mineral density (BMD) and clinical risk factors in osteoporosis risk stratification, it must be independently associated with fracture risk, readily obtainable, and ideally, present a risk which is amenable to osteoporosis treatment. This paper summarizes a review of the scientific literature performed by a Working Group of the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis. Low TBS is consistently associated with an increase in both prevalent and incident fractures that is partly independent of both clinical risk factors and areal BMD (aBMD) at the lumbar spine and proximal femur. More recently, TBS has been shown to have predictive value for fracture independent of fracture probabilities using the FRAX® algorithm. Although TBS changes with osteoporosis treatment, the magnitude is less than that of aBMD of the spine, and it is not clear how change in TBS relates to fracture risk reduction. TBS may also have a role in the assessment of fracture risk in some causes of secondary osteoporosis (e.g., diabetes, hyperparathyroidism and glucocorticoid-induced osteoporosis). In conclusion, there is a role for TBS in fracture risk assessment in combination with both aBMD and FRAX.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

UNLABELLED: Bone microarchitecture by high-resolution peripheral quantitative computed tomography (HR-pQCT) was assessed in adult patients with mild, moderate, and severe osteogenesis imperfecta (OI). The trabecular bone score (TBS), bone mineral density (BMD) by dual-energy X-ray absorptiometry (DXA), and dual X-ray and laser (DXL) at the calcaneus were likewise assessed in patients with OI. Trabecular microstructure and BMD in particular were severely altered in patients with OI. INTRODUCTION: OI is characterized by high fracture risk but not necessarily by low BMD. The main purpose of this study was to assess bone microarchitecture and BMD at different skeletal sites in different types of OI. METHODS: HR-pQCT was performed in 30 patients with OI (mild OI-I, n = 18 (41.8 [34.7, 55.7] years) and moderate to severe OI-III-IV, n = 12 (47.6 [35.3, 58.4] years)) and 30 healthy age-matched controls. TBS, BMD by DXA at the lumbar spine and hip, as well as BMD by DXL at the calcaneus were likewise assessed in patients with OI only. RESULTS: At the radius, significantly lower trabecular parameters including BV/TV (p = 0.01 and p < 0.0001, respectively) and trabecular number (p < 0.0001 and p < 0.0001, respectively) as well as an increased inhomogeneity of the trabecular network (p < 0.0001 and p < 0.0001, respectively) were observed in OI-I and OI-III-IV in comparison to the control group. Similar results for trabecular parameters were found at the tibia. Microstructural parameters were worse in OI-III-IV than in OI-I. No significant differences were found in cortical thickness and cortical porosity between the three subgroups at the radius. The cortical thickness of the tibia was thinner in OI-I (p < 0.001), but not OI-III-IV, when compared to controls. CONCLUSIONS: Trabecular BMD and trabecular bone microstructure in particular are severely altered in patients with clinical OI-I and OI-III-IV. Low TBS and DXL and their significant associations to HR-pQCT parameters of trabecular bone support this conclusion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a cohort study of 182 consecutive patients with active endogenous Cushing's syndrome, the only predictor of fracture occurrence after adjustment for age, gender bone mineral density (BMD) and trabecular bone score (TBS) was 24-h urinary free cortisol (24hUFC) levels with a threshold of 1472 nmol/24 h (odds ratio, 3.00 (95 % confidence interval (CI), 1.52-5.92); p = 0.002). INTRODUCTION: The aim was to estimate the risk factors for fracture in subjects with endogenous Cushing's syndrome (CS) and to evaluate the value of the TBS in these patients. METHODS: All enrolled patients with CS (n = 182) were interviewed in relation to low-traumatic fractures and underwent lateral X-ray imaging from T4 to L5. BMD measurements were performed using a DXA Prodigy device (GEHC Lunar, Madison, Wisconsin, USA). The TBS was derived retrospectively from existing BMD scans, blinded to clinical outcome, using TBS iNsight software v2.1 (Medimaps, Merignac, France). Urinary free cortisol (24hUFC) was measured by immunochemiluminescence assay (reference range, 60-413 nmol/24 h). RESULTS: Among enrolled patients with CS (149 females; 33 males; mean age, 37.8 years (95 % confidence interval, 34.2-39.1); 24hUFC, 2370 nmol/24 h (2087-2632), fractures were confirmed in 81 (44.5 %) patients, with 70 suffering from vertebral fractures, which were multiple in 53 cases; 24 patients reported non-vertebral fractures. The mean spine TBS was 1.207 (1.187-1.228), and TBS Z-score was -1.86 (-2.07 to -1.65); area under the curve (AUC) was used to predict fracture (mean spine TBS) = 0.548 (95 % CI, 0.454-0.641)). In the final regression model, the only predictor of fracture occurrence was 24hUFC levels (p = 0.001), with an increase of 1.041 (95 % CI, 1.019-1.063), calculated for every 100 nmol/24-h cortisol elevation (AUC (24hUFC) = 0.705 (95 % CI, 0.629-0.782)). CONCLUSIONS: Young patients with CS have a low TBS. However, the only predictor of low traumatic fracture is the severity of the disease itself, indicated by high 24hUFC levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

UNLABELLED: It is uncertain whether bone mineral density (BMD) can accurately predict fracture in kidney transplant recipients. Trabecular bone score (TBS) provides information independent of BMD. Kidney transplant recipients had abnormal bone texture as measured by lumbar spine TBS, and a lower TBS was associated with incident fractures in recipients. INTRODUCTION: Trabecular bone score (TBS) is a texture measure derived from dual energy X-ray absorptiometry (DXA) lumbar spine images, providing information independent of bone mineral density. We assessed characteristics associated with TBS and fracture outcomes in kidney transplant recipients. METHODS: We included 327 kidney transplant recipients from Manitoba, Canada, who received a post-transplant DXA (median 106 days post-transplant). We matched each kidney transplant recipient (mean age 45 years, 39 % men) to three controls from the general population (matched on age, sex, and DXA date). Lumbar spine (L1-L4) DXA images were used to derive TBS. Non-traumatic incident fracture (excluding hand, foot, and craniofacial) (n = 31) was assessed during a mean follow-up of 6.6 years. We used multivariable linear regression models to test predictors of TBS, and multivariable Cox proportional hazard regression was used to estimate hazard ratios (HRs) per standard deviation decrease in TBS to express the gradient of risk. RESULTS: Compared to the general population, kidney transplant recipients had a significantly lower lumbar spine TBS (1.365 ± 0.129 versus 1.406 ± 0.125, P < 0.001). Multivariable linear regression revealed that receipt of a kidney transplant was associated with a significantly lower mean TBS compared to controls (-0.0369, 95 % confidence interval [95 % CI] -0.0537 to -0.0202). TBS was associated with fractures independent of the Fracture Risk Assessment score including BMD (adjusted HR per standard deviation decrease in TBS 1.64, 95 % CI 1.15-2.36). CONCLUSION: Kidney transplant recipients had abnormal bone texture as assessed by TBS and a lower lumbar spine TBS was associated with fractures in recipients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trabecular bone score (TBS) is a gray-level textural index of bone microarchitecture derived from lumbar spine dual-energy X-ray absorptiometry (DXA) images. TBS is a bone mineral density (BMD)-independent predictor of fracture risk. The objective of this meta-analysis was to determine whether TBS predicted fracture risk independently of FRAX probability and to examine their combined performance by adjusting the FRAX probability for TBS. We utilized individual-level data from 17,809 men and women in 14 prospective population-based cohorts. Baseline evaluation included TBS and the FRAX risk variables, and outcomes during follow-up (mean 6.7 years) comprised major osteoporotic fractures. The association between TBS, FRAX probabilities, and the risk of fracture was examined using an extension of the Poisson regression model in each cohort and for each sex and expressed as the gradient of risk (GR; hazard ratio per 1 SD change in risk variable in direction of increased risk). FRAX probabilities were adjusted for TBS using an adjustment factor derived from an independent cohort (the Manitoba Bone Density Cohort). Overall, the GR of TBS for major osteoporotic fracture was 1.44 (95% confidence interval [CI] 1.35-1.53) when adjusted for age and time since baseline and was similar in men and women (p > 0.10). When additionally adjusted for FRAX 10-year probability of major osteoporotic fracture, TBS remained a significant, independent predictor for fracture (GR = 1.32, 95% CI 1.24-1.41). The adjustment of FRAX probability for TBS resulted in a small increase in the GR (1.76, 95% CI 1.65-1.87 versus 1.70, 95% CI 1.60-1.81). A smaller change in GR for hip fracture was observed (FRAX hip fracture probability GR 2.25 vs. 2.22). TBS is a significant predictor of fracture risk independently of FRAX. The findings support the use of TBS as a potential adjustment for FRAX probability, though the impact of the adjustment remains to be determined in the context of clinical assessment guidelines. © 2015 American Society for Bone and Mineral Research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neurofibromatosis 1 (NF1) is an autosomal dominant hereditary syndrome, affecting skin, neural tissues and skeleton. Hallmarks of NF1 include benign cutaneous neurofibroma tumors, pigmentation lesions on the skin and in the iris, learning disabilities and predisposition to selected malignancies. Low bone mineral density (BMD) and osteopenia/osteoporosis are common in NF1. Osteoporosis is a systemic disorder characterized by low bone mineral density and increased fracture risk. Treatment of osteoporosis aims to prevent falls and decrease fracture risk. Osteoporosis is diagnosed in adults by measuring BMD and evaluating clinical risk factors of the patient. Bone turnover is a process of old bone resorbed by osteoclasts and new bone formed by osteoblasts. Multinuclear osteoclasts are derived from osteoclast progenitors, which can be isolated from peripheral blood. Osteoclast progenitors were isolated from 17 NF1 patients and healthy controls, and cultured in vitro to osteoclasts. NF1 osteoclasts are hyperactive, displaying increased differentiation and resorption capacity, abnormal morphology and tolerance to serum deprivation compared to control osteoclasts. These findings expanded the study to evaluate the effects of bisphosphonates, drugs designed to treat osteoporosis, in osteoclasts derived from blood samples of 20 NF1 and control persons. The number of control osteoclasts was expectedly reduced after bisphosphonate treatment. However, NF1 osteoclasts tolerated the apoptotic effect of alendronate, zoledronic acid and clodronate in vitro compared to controls. NF1-related osteoporosis was found in ~20 % of the patients, and selected laboratory parameters were measured. Patients with NF1 have increased levels of serum CTX and PINP, reflecting increased bone turnover in vivo. BMD decreases progressively in NF1 as evaluated in 19 NF1 patients 12 years after their initial BMD measurement. Patients with NF1-related osteopenia often progress to osteoporosis. This was found in patients aged 37-76.