1000 resultados para Blue Heelers


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we review our recent experimental work on coherent and blue phase liquid crystal lasers.We will present results on thin-film photonic band edge lasing devices using dye-doped low molar mass liquid crystals in self-organised chiral nematic and blue phases. We show that high Q-factor lasers can be achieved in these materials and demonstrate that a single mode output with a very narrow line width can be readily achievable in well-aligned mono-domain samples. Further, we have found that the performance of the laser, i.e. the slope efficiency and the excitation threshold, are dependent upon the physical parameters of the low molar mass chiral nematic liquid crystals. Specifically, slope efficiencies greater than 60% could be achieved depending upon the materials used and the device geometry employed. We will discuss the important parameters of the liquid crystal host/dye guest materials and device configuration that are needed to achieve such high slope efficiencies. Further we demonstrate how the wavelength of the laser can be tuned using an in-plane electric field in a direction perpendicular to the helix axis via a flexoelectric mechanism as well as thermally using thermochromic effects. We will then briefly outline data on room temperature blue phase lasers and further show how liquid crystal/lenslet arrays have been used to demonstrate 2D laser emission of any desired wavelength. Finally, we present preliminary data on LED/incoherent pumping of RG liquid crystal lasers leading to a continuous wave output. © 2009 SPIE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A promising approach to the fabrication of materials with nanoscale features is the transfer of liquid-crystalline structure to polymers. However, this has not been achieved in systems with full three-dimensional periodicity. Here we demonstrate the fabrication of self-assembled three-dimensional nanostructures by polymer templating blue phase I, a chiral liquid crystal with cubic symmetry. Blue phase I was photopolymerized and the remaining liquid crystal removed to create a porous free-standing cast, which retains the chiral three-dimensional structure of the blue phase, yet contains no chiral additive molecules. The cast may in turn be used as a hard template for the fabrication of new materials. By refilling the cast with an achiral nematic liquid crystal, we created templated blue phases that have unprecedented thermal stability in the range -125 to 125 °C, and that act as both mirrorless lasers and switchable electro-optic devices. Blue-phase templated materials will facilitate advances in device architectures for photonics applications in particular.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A promising approach to the fabrication of materials with nanoscale features is the transfer of liquid-crystalline structure to polymers. However, this has not been achieved in systems with full three-dimensional periodicity. Here we demonstrate the fabrication of self-assembled three-dimensional nanostructures by polymer templating blue phase I, a chiral liquid crystal with cubic symmetry. Blue phase I was photopolymerized and the remaining liquid crystal removed to create a porous free-standing cast, which retains the chiral three-dimensional structure of the blue phase, yet contains no chiral additive molecules. The cast may in turn be used as a hard template for the fabrication of new materials. By refilling the cast with an achiral nematic liquid crystal, we created templated blue phases that have unprecedented thermal stability in the range-125 to 125°C, and that act as both mirrorless lasers and switchable electro-optic devices. Blue-phase templated materials will facilitate advances in device architectures for photonics applications in particular. © 2012 Macmillan Publishers Limited. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present printable laser devices formed by dispersing dye-doped chiral nematic liquid crystals in solution-processible polymers. Unlike current technology, this allows lasers to be formed on a wide variety of surfaces, e.g. paper, plastic, metal. © 2012 OSA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The efficiency of the injection and recombination processes in InGaN/GaN LEDs is governed by the properties of the active region of the devices, which strongly depend on the conditions used for the growth of the epitaxial material. To improve device quality, it is very important to understand how the high temperatures used during the growth process can modify the quality of the epitaxial material. With this paper we present a study of the modifications in the properties of InGaN/GaN LED structures induced by high temperature annealing: thermal stress tests were carried out at 900 °C, in nitrogen atmosphere, on selected samples. The efficiency and the recombination dynamics were evaluated by photoluminescence measurements (both integrated and time-resolved), while the properties of the epitaxial material were studied by Secondary Ion Mass Spectroscopy (SIMS) and Rutherford Backscattering (RBS) channeling measurements. Results indicate that exposure to high temperatures may lead to: (i) a significant increase in the photoluminescence efficiency of the devices; (ii) a decrease in the parasitic emission bands located between 380 nm and 400 nm; (iii) an increase in carrier lifetime, as detected by time-resolved photoluminescence measurements. The increase in device efficiency is tentatively ascribed to an improvement in the crystallographic quality of the samples. © 2013 SPIE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present printable laser devices formed by dispersing dye-doped chiral nematic liquid crystals in solution-processible polymers. Unlike current technology, this allows lasers to be formed on a wide variety of surfaces, e.g. paper, plastic, metal. © OSA 2012.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The edible blue-green alga, Nostoc sphaeroides Kutzing, is able to form microcolonies and spherical macrocolonies. It has been used as a potent herbal medicine and dietary supplement for centuries because of its nutraceutical and pharmacological benefits. However, limited information is available on the development of the spherical macrocolonies and the environmental factors that affect their structure. This report described the morphogenesis of N. sphaeroides from single trichomes to macrocolonies. During the process, most structural features of macrocolonies of various sizes were dense maculas, rings, the compact core and the formation of liquid core; and the. laments within the macrocolonies showed different lengths and arrays depending on the sizes of macrocolonies. Meanwhile temperature and light intensity also strongly affected the internal structure of macrocolonies. As microcolonies further increased in size to form 30 mm macrocolonies, the colonies differentiated into distinct outer, middle and inner layers. The. laments of the outer layer showed higher maximum photosynthetic rates, higher light saturation point, and higher photosynthetic effciency than those of the inner layer; whereas the. laments of the inner layer had a higher content of chlorophyll a and phycobiliproteins than those of the outer layer. The results obtained in this study were important for the mass cultivation of N. sphaeroides as a nutraceutical product. (c) 2008 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved.