946 resultados para Blood cells.
Resumo:
Introduction: The increasing number of reports on the relation between transfusion of stored red blood cells (RBCs) and adverse patient outcome has sparked an intense debate on the benefits and risks of blood transfusions. Meanwhile, the pathophysiological mechanisms underlying this postulated relation remain unclear. The development of hemolysis during storage might contribute to this mechanism by release of free hemoglobin (fHb), a potent nitric oxide (NO) scavenger, which may impair vasodilation and microcirculatory perfusion after transfusion. The objective of this prospective observational pilot study was to establish whether RBC transfusion results in increased circulating fHb levels and plasma NO consumption. In addition, the relation between increased fHb values and circulating haptoglobin, its natural scavenger, was studied. Methods: Thirty patients electively received 1 stored packed RBC unit (n = 8) or 2 stored packed RBC units (n = 22). Blood samples were drawn to analyze plasma levels of fHb, haptoglobin, and NO consumption prior to transfusion, and 15, 30, 60 and 120 minutes and 24 hours after transfusion. Differences were compared using Pearson's chi-square test or Fisher's exact test for dichotomous variables, or an independent-sample t test or Mann-Whitney U test for continuous data. Continuous, multiple-timepoint data were analyzed using repeated one-way analysis of variance or the Kruskall-Wallis test. Correlations were analyzed using Spearman or Pearson correlation. Results: Storage duration correlated significantly with fHb concentrations and NO consumption within the storage medium (r = 0.51, P < 0.001 and r = 0.62, P = 0.002). fHb also significantly correlated with NO consumption directly (r = 0.61, P = 0.002). Transfusion of 2 RBC units significantly increased circulating fHb and NO consumption in the recipient (P < 0.001 and P < 0.05, respectively), in contrast to transfusion of 1 stored RBC unit. Storage duration of the blood products did not correlate with changes in fHb and NO consumption in the recipient. In contrast, pre-transfusion recipient plasma haptoglobin levels inversely influenced post-transfusion fHb concentrations. Conclusion: These data suggest that RBC transfusion can significantly increase post-transfusion plasma fHb levels and plasma NO consumption in the recipient. This finding may contribute to the potential pathophysiological mechanism underlying the much-discussed adverse relation between blood transfusions and patient outcome. This observation may be of particular importance for patients with substantial transfusion requirements.
Resumo:
BACKGROUND: The characteristics of blood recipients including diagnoses associated with transfusion and posttransfusion survival are unreported in Brazil. The goals of this analysis were: 1) to describe blood utilization according to clinical diagnoses and patient characteristics and 2) to determine the factors associated with survival of blood recipients. STUDY DESIGN AND METHODS: A retrospective cross-sectional analysis was conducted on all inpatients in 2004. Data came from three sources: The first two files consist of data about patient characteristics, clinical diagnosis, and transfusion. Analyses comparing transfused and nontransfused patients were conducted. The third file was used to determine survival recipients up to 3 years after transfusion. Logistic regression was conducted among transfused patients to examine characteristics associated with survival. RESULTS: In 2004, a total of 30,779 patients were admitted, with 3835 (12.4%) transfused. These patients had 10,479 transfusions episodes, consisting of 39,561 transfused components: 16,748 (42%) red blood cells, 15,828 (40%) platelets (PLTs), and 6190 (16%) plasma. The median number of components transfused was three (range, 1-656) per patient admission. Mortality during hospitalization was different for patients whose admissions included transfusion or not (24% vs. 4%). After 1 year, 56% of transfusion recipients were alive. The multivariable model of factors associated with mortality after transfusion showed that the most significant factors in descending order were hospital ward, increasing age, increasing number of components transfused, and type of components received. CONCLUSION: Ward and transfusion are markers of underlying medical conditions and are associated with the probability of survival. PLT transfusions are common and likely reflect the types of patients treated. This comprehensive blood utilization study, the first of its kind in Brazil, can help in developing transfusion policy analyses in South America.
Resumo:
The arterial wall contains MSCs with mesengenic and angiogenic abilities. These multipotent precursors have been isolated from variously-sized human adult segments, belying the notion that vessel wall is a relatively quiescent tissue. Recently, our group identified in normal human arteries a vasculogenic niche and subsequently isolated and characterized resident MSCs (VW-MSCs) with angiogenic ability and multilineage potential. To prove that VW-MSCs are involved in normal and pathological vascular remodeling, we used a long-term organ culture system; this method was of critical importance to follow spontaneous 3-D vascular remodeling without any influence of blood cells. Next we tried to identify and localize in situ the VW-MSCs and to understand their role in the vascular remodeling in failed arterial homografts. Subsequently, we isolated this cell population and tested in vitro their multilineage differentiation potential through immunohistochemical, immunofluorescence, RT-PCR and ultrastructural analysis. From 25-30cm2 of each vascular wall homograft sample, we isolated a cell population with MSCs properties; these cells expressed MSC lineage molecules (CD90, CD44, CD105, CD29, CD73), stemness (Notch-1, Oct-4, Sca-1, Stro-1) and pericyte markers (NG2) whilst were negative for hematopoietic and endothelial markers (CD34, CD133, CD45, KDR, CD146, CD31 and vWF). MSCs derived from failed homografts (H-MSCs) exhibited adipogenic, osteogenic and chondrogenic potential but scarce propensity to angiogenic and leiomyogenic differentiation. The present study demonstrates that failed homografts contain MSCs with morphological, phenotypic and functional MSCs properties; H-MSCs are long-lived in culture, highly proliferating and endowed with prompt ability to differentiate into adipocytes, osteocytes and chondrocytes; compared with VW-MSCs from normal arteries, H-MSCs show a failure in angiogenic and leiomyogenic differentiation. A switch in MSCs plasticity could be the basis of pathological remodeling and contribute to aneurysmal failure of arterial homografts. The study of VW-MSCs in a pathological setting indicate that additional mechanisms are involved in vascular diseases; their knowledge will be useful for opening new therapeutic options in cardiovascular diseases.
Resumo:
CD45, also called leucocyte common antigen is a transmembrane protein tyrosine phosphatase on the surface of nearly all white blood cells and has a functional role in signal transduction. In the brain, the expression of CD45 can be used to distinguish microglial cells with a characteristic phenotype of CD11b/c+ and CD45(low) from other central nervous system (CNS) macrophages which show an expression of CD11b/c+ and CD45(high). In the course of pathological changes in the CNS, microglia in rodents is known to readily upregulate expression of various surface molecules, such as CD45. Understanding the mechanisms that regulate expression of surface molecules is essential to study the pathogenesis of CNS diseases. In the present study, the expression of CD45 on microglia of 42 dogs was examined ex vivo by means of flow cytometry. The dogs were classified in two groups according to the histopathological diagnosis in the CNS. All dogs without changes in the CNS (group I; n = 22) only showed low percentages of CD45+ microglial cells. In group II consisting of 20 dogs with different intracranial diseases varying results were obtained. Thirteen dogs showed a low percentage of CD45+ microglial cells whereas seven dogs exhibited high percentages of microglial cells expressing CD45. Evaluation of expression intensity in these seven dogs revealed two subpopulations of CD45+ microglial cells: a large subpopulation with CD45(low) and a small subpopulation with CD45(high). The expression intensity of CD45(high) was comparable with that of canine monocytes. It was attempted to correlate these findings to age of the animals, underlying disease, duration of clinical signs, medical treatment, occurrence of seizure activity and the expression of other surface molecules. It appeared that dogs with high percentages of CD45+ suffered from long-lasting CNS disease with seizures. In future studies, the reason and consequences for upregulated CD45 in long-lasting CNS diseases has to be further evaluated.
Resumo:
BACKGROUND: Xenoreactive human natural antibodies (NAb) are predominantly directed against galactose-alpha(1,3)galactose (Gal). Binding of immunoglobulin (Ig) G and IgM NAb activates porcine endothelial cells (pEC) and triggers complement lysis responsible for hyperacute xenograft rejection. In vitro, IgG NAb induce human natural killer (NK) cell-mediated lysis of pEC by antibody-dependent cell-mediated cytotoxicity (ADCC). The present study examined the levels of anti-porcine NAb in a large number of individuals and addressed the functional role of non-Gal anti-porcine NAb. METHODS: Sera from 120 healthy human blood donors were analyzed for the presence of anti-porcine NAb by flow cytometry using porcine red blood cells (pRBC), lymphoblastoid cells (pLCL), and pEC derived from control or Gal-deficient pigs. Xenogeneic complement lysis was measured by flow cytometry using human serum and rabbit complement. ADCC was analyzed by chromium-release assays using human serum and freshly isolated NK cells. RESULTS: Human IgM binding to pRBC was found in 93% and IgG binding in 86% of all samples. Non-Gal NAb comprised 13% of total IgM and 36% of total IgG binding to pEC. NAb/complement-induced lysis and ADCC of Gal-deficient compared to Gal-positive pEC were 21% and 29%, respectively. The majority of anti-Gal and non-Gal IgG NAb were of the IgG2 subclass. CONCLUSIONS: The generation of Gal-deficient pigs has overcome hyperacute anti-Gal-mediated xenograft rejection in nonhuman primates. Non-Gal anti-porcine NAb represent a potentially relevant immunological hurdle in a subgroup of individuals by inducing endothelial damage in xenografts.
Resumo:
BACKGROUND: The purpose of the study was to investigate allogeneic blood transfusion (ABT) and preoperative anemia as risk factors for surgical site infection (SSI). STUDY DESIGN AND METHODS: A prospective, observational cohort of 5873 consecutive general surgical procedures at Basel University Hospital was analyzed to determine the relationship between perioperative ABT and preoperative anemia and the incidence of SSI. ABT was defined as transfusion of leukoreduced red blood cells during surgery and anemia as hemoglobin concentration of less than 120 g/L before surgery. Surgical wounds and resulting infections were assessed to Centers for Disease Control standards. RESULTS: The overall SSI rate was 4.8% (284 of 5873). In univariable logistic regression analyses, perioperative ABT (crude odds ratio [OR], 2.93; 95% confidence interval [CI], 2.1 to 4.0; p < 0.001) and preoperative anemia (crude OR, 1.32; 95% CI, 1.0 to 1.7; p = 0.037) were significantly associated with an increased odds of SSI. After adjusting for 13 characteristics of the patient and the procedure in multivariable analyses, associations were substantially reduced for ABT (OR, 1.25; 95% CI, 0.8 to 1.9; p = 0.310; OR, 1.07; 95% CI, 0.6 to 2.0; p = 0.817 for 1-2 blood units and >or=3 blood units, respectively) and anemia (OR, 0.91; 95% CI, 0.7 to 1.2; p = 0.530). Duration of surgery was the main confounding variable. CONCLUSION: Our findings point to important confounding factors and strengthen existing doubts on leukoreduced ABT during general surgery and preoperative anemia as risk factors for SSIs.
Resumo:
Several methods to detect anti-A/B antibodies based on haemagglutination and haemolysis have been described. These methods measure predominantly anti-A/B immunoglobulin (Ig)M, whereas anti-A/B IgG and IgG subclasses are less well examined. We established a flow cytometry method (ABO-fluorescence-activated cell sorting; ABO-FACS) to quantify binding of anti-A/B IgM, IgG and IgG subclasses to human A or B red blood cells. Anti-A/B IgM were present in the majority of 120 blood donors, as expected from blood group typing. The sensitivity and specificity of anti-A/B IgM to predict the blood group was 93% and 96% respectively. Anti-A/B IgG was found in 34/38 blood group O samples (89%). Anti-B IgG in blood group A or anti-A IgG in blood group B was present in 4/28 (14%) and 1/28 (4%) samples, respectively, and absent in 26 AB sera. IgG2 was the predominant IgG subclass. The correlation of anti-A/B IgM and IgG in the ABO-FACS with haemagglutination titres was 0.870 and 0.783, respectively (n = 240; P < 0.001) whereas the comparison of ABO-FACS with ABO-enzyme-linked immunosorbent assay was less significant. In conclusion, ABO-FACS is a valid method to quantify anti-A/B IgM, IgG and IgG subclasses. It opens the possibility of isotype-specific monitoring of anti-A/B antibodies levels after ABO-incompatible solid organ and stem cell transplantation.
Resumo:
The science of blood groups has made giant steps forward during the last decade. Blood-group typing of red blood cells (RBCs) is performed on more than 15 million samples per year in Europe, today much less often for forensic reasons than for clinical purposes such as transfusion and organ transplantation. Specific monoclonal antibodies are used with interpretation on the basis of RBC agglutination patterns, and mass genotyping may well be on its way to becoming a routine procedure. The discovery that most blood group systems, whose antigens are by definition found on RBCs, are also expressed in multiple other tissues has sparked the interest of transplantation medicine in immunohematology beyond the HLA system. The one and only "histo-blood group" (HBG) system that is routinely considered in transplantation medicine is ABO, because ABO antigen-incompatible donor/recipient constellations are preferably avoided. However, other HBG systems may also play a role, thus far underestimated. This paper is an up-to-date analysis of the importance of HBG systems in the alloimmunity of transplantation and autoimmune events, such as hemolytic anemia.
Resumo:
BACKGROUND Open radical cystectomy (ORC) is associated with substantial blood loss and a high incidence of perioperative blood transfusions. Strategies to reduce blood loss and blood transfusion are warranted. OBJECTIVE To determine whether continuous norepinephrine administration combined with intraoperative restrictive hydration with Ringer's maleate solution can reduce blood loss and the need for blood transfusion. DESIGN, SETTING, AND PARTICIPANTS This was a double-blind, randomised, parallel-group, single-centre trial including 166 consecutive patients undergoing ORC with urinary diversion (UD). Exclusion criteria were severe hepatic or renal dysfunction, congestive heart failure, and contraindications to epidural analgesia. INTERVENTION Patients were randomly allocated to continuous norepinephrine administration starting with 2 μg/kg per hour combined with 1 ml/kg per hour until the bladder was removed, then to 3 ml/kg per hour of Ringer's maleate solution (norepinephrine/low-volume group) or 6 ml/kg per hour of Ringer's maleate solution throughout surgery (control group). OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Intraoperative blood loss and the percentage of patients requiring blood transfusions perioperatively were assessed. Data were analysed using nonparametric statistical models. RESULTS AND LIMITATIONS Total median blood loss was 800 ml (range: 300-1700) in the norepinephrine/low-volume group versus 1200 ml (range: 400-2800) in the control group (p<0.0001). In the norepinephrine/low-volume group, 27 of 83 patients (33%) required an average of 1.8 U (±0.8) of packed red blood cells (PRBCs). In the control group, 50 of 83 patients (60%) required an average of 2.9 U (±2.1) of PRBCs during hospitalisation (relative risk: 0.54; 95% confidence interval [CI], 0.38-0.77; p=0.0006). The absolute reduction in transfusion rate throughout hospitalisation was 28% (95% CI, 12-45). In this study, surgery was performed by three high-volume surgeons using a standardised technique, so whether these significant results are reproducible in other centres needs to be shown. CONCLUSIONS Continuous norepinephrine administration combined with restrictive hydration significantly reduces intraoperative blood loss, the rate of blood transfusions, and the number of PRBC units required per patient undergoing ORC with UD.
Resumo:
Acute psychosocial stress stimulates transient increases in circulating pro-inflammatory plasma cytokines, but little is known about stress effects on anti-inflammatory cytokines or underlying mechanisms. We investigated the stress kinetics and interrelations of pro- and anti-inflammatory measures on the transcriptional and protein level. Forty-five healthy men were randomly assigned to either a stress or control group. While the stress group underwent an acute psychosocial stress task, the second group participated in a non-stress control condition. We repeatedly measured before and up to 120min after stress DNA binding activity of the pro-inflammatory transcription factor NF-κB (NF-κB-BA) in peripheral blood mononuclear cells, whole-blood mRNA levels of NF-κB, its inhibitor IκBα, and of the pro-inflammatory cytokines interleukin (IL)-1ß and IL-6, and the anti-inflammatory cytokine IL-10. We also repeatedly measured plasma levels of IL-1ß, IL-6, and IL-10. Compared to non-stress, acute stress induced significant and rapid increases in NF-κB-BA and delayed increases in plasma IL-6 and mRNA of IL-1ß, IL-6, and IκBα (p's<.045). In the stress group, significant increases over time were also observed for NF-κB mRNA and plasma IL-1ß and IL-10 (p's<.055). NF-κB-BA correlated significantly with mRNA of IL-1β (r=.52, p=.002), NF-κB (r=.48, p=.004), and IκBα (r=.42, p=.013), and marginally with IL-6 mRNA (r=.31, p=.11). Plasma cytokines did not relate to NF-κB-BA or mRNA levels of the respective cytokines. Our data suggest that stress induces increases in NF-κB-BA that relate to subsequent mRNA expression of pro-inflammatory, but not anti-inflammatory cytokines, and of regulatory-cytoplasmic-proteins. The stress-induced increases in plasma cytokines do not seem to derive from de novo synthesis in circulating blood cells.
Resumo:
Red Blood cell mediated and glass needle mediated microinjection technology was used to introduce macromolecules into mammalian somatic cells. The biological activities of DNA synthesis inducing factor(s) (Chapter 1), mitotic factor(s) (Chapter 2), and DNA coding for ovalbumin and thymidine kinase (Chapter 3) were studied following injection into mammalian somatic cells.^ Chapter 1. A cell undergoing DNA replication (S phase) contains a factor(s) that induces DNA synthesis prematurely in a G(,1) nucleus when an S phase cell is fused to a G(,1) cell. An assay for the active factor(s) was developed in which a mixture of s phase extract loaded red blood cells (RBC) and synchronous G(,1) HeLa cells was centrifuged onto Concanavalin A (Con A) treated coverslips and fused by PEG. This technique is called "Centrifusion". The synchronous G(,1) HeLa cells injected with S phase extract initiated DNA synthesis earlier than the control G(,1) cells mock injected with RBC loaded with buffer.^ Chapter 2. It has been demonstrated that fusion between a mitotic and an interphase cell usually leads to breakdown of the interphase nucleus, followed by condensation of the interphase chromatin into discrete chromosomes, a process termed premature chromosome condensation. I wanted to develop an assay for the mitotic factor(s) that induces premature chromosome condensation. Experiments were performed utilizing glass needle mediated microinjection of HeLa cell mitotic extract into interphase somatic mammalian cells in an attempt to induce premature chromosome condensation. However, I was not able to induce premature chromosome condensation in the interphase cells, probably because of an inability to introduce sufficient mitotic factor(s) into the cells.^ Chapter 3. A recombinant plasmid containing the chicken ovalbumin gene and three copies of the Herpes thymidine Kinase gene (pOV12-TK) was introduced into mouse LMTK('-) cell nuclei using glass needle mediated gene transfer resulting in LMTK('+) clones that were selected for in HAT medium. Restriction enzyme analysis of the high molecular weight DNA from 6 HAT medium survivor cell clones revealed the presence of one or at best only a few copies of the 12kb ovalbumin gene per mouse genome. Further analysis showed the ovalbumin DNA was not rearranged and was associated with high molecular weight mouse cell DNA. Each of the analyzed cell clones produced ovalbumin demonstrating that the biological activity of the microinjected ovalbumin was retained. ^
Resumo:
Cellular therapies, as neuronal progenitor (NP) cells grafting, are promising therapies for patients affected with neurodegenerative diseases like Creutzfeldt-Jakob Disease (CJD). At this time there is no effective treatment or cure for CJD. The disease is inevitably fatal and affected people usually die within months of the appearance of the first clinical symptoms. Compelling evidence indicate that the hallmark event in the disease is the conversion of the normal prion protein (termed PrPC) into the disease-associated, misfolded form (called PrPSc). Thus, a reasonable therapeutic target would be to prevent PrP misfolding and prion replication. This strategy has been applied with poor results since at the time of clinical intervention substantial brain damage has been done. It seems that a more effective treatment aimed at patients with established symptoms of CJD would need to stop further brain degeneration or even recover some of the previously lost brain tissue. The most promising possibility to recover brain tissue is the use of NPs that have the potential to replenish the nerve cells lost during the early stages of the disease. Advanced cellular therapies, beside their potential for cell replacement, might be used as biomaterials for drug delivery in order to stimulate cell survival or the resolution the disease. Also, implanted cells can be genetically manipulated to correct abnormalities causing disease or to make them more resistant to the toxic microenvironments present in damaged tissue. In recent years cell engineering has been within the scope of the scientific and general community after the development of technologies able to “de-differentiate” somatic cells into induced-pluripotent stem (IPS) cells. This new tool permits the use of easy-to-reach cells like skin or blood cells as a primary material to obtain embryonic stem-like cells for cellular therapies, evading all ethical issues regarding the use of human embryos as a source of embryonic stem cells. The complete work proposes to implant IPS-derived NP cells into the brain of prion-infected animals to evaluate their therapeutic potential. Since it is well known that the expression of prion protein in the cell membrane is necessary for PrPSc mediated toxicity, we also want to determine if NPs lacking the prion protein have better survival rates once implanted into sick animals. The main objective of this work is to develop implantable neural precursor from IPS coming from animals lacking the prion protein. Specific aim 1: To develop and characterize cellular cultures of IPS cells from prp-/- mice. Fibroblasts from prp-/- animals will be reprogrammed using the four Yamanaka factors. IPS colonies will be selected and characterized by immunohistochemistry for markers of pluripotency. Their developmental capabilities will be evaluated by teratoma and embryoid body formation assays. Specific aim 2: To differentiate IPS cells to a neuronal lineage. IPS cells will be differentiated to a NP stage by the use of defined media culture conditions. NP cells will be characterized by their immunohistochemical profile as well as by their ability to differentiate into neuronal cells. Specific aim 3: Cellular labeling of neuronal progenitors cells for in vitro traceability. In order to track the cells once implanted in the host brain, they will be tagged with different methods such as lipophilic fluorescent tracers and transduction with GFP protein expression.
Resumo:
By means of optical pumping with laser light it is possible to enhance the nuclear spin polarization of gaseous xenon by four to five orders of magnitude. The enhanced polarization has allowed advances in nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI), including polarization transfer to molecules and imaging of lungs and other void spaces. A critical issue for such applications is the delivery of xenon to the sample while maintaining the polarization. Described herein is an efficient method for the introduction of laser-polarized xenon into systems of biological and medical interest for the purpose of obtaining highly enhanced NMR/MRI signals. Using this method, we have made the first observation of the time-resolved process of xenon penetrating the red blood cells in fresh human blood—the xenon residence time constant in the red blood cells was measured to be 20.4 ± 2 ms. The potential of certain biologically compatible solvents for delivery of laser-polarized xenon to tissues for NMR/MRI is discussed in light of their respective relaxation and partitioning properties.
Resumo:
Red blood cells (RBCs), previously fixed with glutaraldehyde, adhere to glass slides coated with fibrinogen. The RBC deposition process on the horizontal glass surface is investigated by analyzing the relative surface covered by the RBCs, as well as the variance of this surface coverage, as a function of the concentration of particles. This study is performed by optical microscopy and image analysis. A model, derived from the classical random sequential adsorption model, has been developed to account for the experimental results. This model highlights the strong influence of the hydrodynamic interactions during the deposition process.