983 resultados para Blood -- Circulation, Artificial
Resumo:
Abstract Background Accurate malaria diagnosis is mandatory for the treatment and management of severe cases. Moreover, individuals with asymptomatic malaria are not usually screened by health care facilities, which further complicates disease control efforts. The present study compared the performances of a malaria rapid diagnosis test (RDT), the thick blood smear method and nested PCR for the diagnosis of symptomatic malaria in the Brazilian Amazon. In addition, an innovative computational approach was tested for the diagnosis of asymptomatic malaria. Methods The study was divided in two parts. For the first part, passive case detection was performed in 311 individuals with malaria-related symptoms from a recently urbanized community in the Brazilian Amazon. A cross-sectional investigation compared the diagnostic performance of the RDT Optimal-IT, nested PCR and light microscopy. The second part of the study involved active case detection of asymptomatic malaria in 380 individuals from riverine communities in Rondônia, Brazil. The performances of microscopy, nested PCR and an expert computational system based on artificial neural networks (MalDANN) using epidemiological data were compared. Results Nested PCR was shown to be the gold standard for diagnosis of both symptomatic and asymptomatic malaria because it detected the major number of cases and presented the maximum specificity. Surprisingly, the RDT was superior to microscopy in the diagnosis of cases with low parasitaemia. Nevertheless, RDT could not discriminate the Plasmodium species in 12 cases of mixed infections (Plasmodium vivax + Plasmodium falciparum). Moreover, the microscopy presented low performance in the detection of asymptomatic cases (61.25% of correct diagnoses). The MalDANN system using epidemiological data was worse that the light microscopy (56% of correct diagnoses). However, when information regarding plasma levels of interleukin-10 and interferon-gamma were inputted, the MalDANN performance sensibly increased (80% correct diagnoses). Conclusions An RDT for malaria diagnosis may find a promising use in the Brazilian Amazon integrating a rational diagnostic approach. Despite the low performance of the MalDANN test using solely epidemiological data, an approach based on neural networks may be feasible in cases where simpler methods for discriminating individuals below and above threshold cytokine levels are available.
Resumo:
INTRODUCTION: Thiobarbituric acid-reactive substance is a marker of oxidative stress and has cytotoxic and genotoxic actions. C- reactive protein is used to evaluate the acute phase of inflammatory response. OBJECTIVES: To assess the thiobarbituric acid-reactive substance and C-reactive protein levels during extracorporeal circulation in patients submitted to cardiopulmonary bypass. METHODS: Twenty-five consecutive surgical patients (16 men and nine women; mean age 61.2 ± 9.7 years) with severe coronary artery disease diagnosed by angiography scheduled for myocardial revascularization surgery with extracorporeal circulation were selected. Blood samples were collected immediately before initializing extracorporeal circulation, T0; in 10 minutes, T10; and in 30 minutes, T30. RESULTS: The thiobarbituric acid-reactive substance levels increased after extracorporeal circulation (P=0.001), with average values in T0=1.5 ± 0.07; in T10=5.54 ± 0.35; and in T30=3.36 ± 0.29 mmoles/mg of serum protein. The C-reactive protein levels in T0 were negative in all samples; in T10 average was 0.96 ± 0.7 mg/dl; and in T30 average was 0.99 ± 0.76 mg/dl. There were no significant differences between the dosages in T10 and T30 (P=0.83). CONCLUSIONS: C-reactive protein and thiobarbituric acid-reactive substance plasma levels progressively increased during extracorporeal circulation, with maximum values of thiobarbituric acid-reactive substance at 10 min and of Creactive protein at 30 min. It suggests that there are an inflammatory response and oxidative stress during extracorporeal circulation.
Resumo:
[EN] In this review we integrate ideas about regional and systemic circulatory capacities and the balance between skeletal muscle blood flow and cardiac output during heavy exercise in humans. In the first part of the review we discuss issues related to the pumping capacity of the heart and the vasodilator capacity of skeletal muscle. The issue is that skeletal muscle has a vast capacity to vasodilate during exercise [approximately 300 mL (100 g)(-1) min(-1)], but the pumping capacity of the human heart is limited to 20-25 L min(-1) in untrained subjects and approximately 35 L min(-1) in elite endurance athletes. This means that when more than 7-10 kg of muscle is active during heavy exercise, perfusion of the contracting muscles must be limited or mean arterial pressure will fall. In the second part of the review we emphasize that there is an interplay between sympathetic vasoconstriction and metabolic vasodilation that limits blood flow to contracting muscles to maintain mean arterial pressure. Vasoconstriction in larger vessels continues while constriction in smaller vessels is blunted permitting total muscle blood flow to be limited but distributed more optimally. This interplay between sympathetic constriction and metabolic dilation during heavy whole-body exercise is likely responsible for the very high levels of oxygen extraction seen in contracting skeletal muscle. It also explains why infusing vasodilators in the contracting muscles does not increase oxygen uptake in the muscle. Finally, when approximately 80% of cardiac output is directed towards contracting skeletal muscle modest vasoconstriction in the active muscles can evoke marked changes in arterial pressure.
Resumo:
[EN] BACKGROUND: A classic, unresolved physiological question is whether central cardiorespiratory and/or local skeletal muscle circulatory factors limit maximal aerobic capacity (VO2max) in humans. Severe heat stress drastically reduces VO2max, but the mechanisms have never been studied. METHODS AND RESULTS: To determine the main contributing factor that limits VO2max with and without heat stress, we measured hemodynamics in 8 healthy males performing intense upright cycling exercise until exhaustion starting with either high or normal skin and core temperatures (+10 degrees C and +1 degrees C). Heat stress reduced VO2max, 2-legged VO2, and time to fatigue by 0.4+/-0.1 L/min (8%), 0.5+/-0.2 L/min (11%), and 2.2+/-0.4 minutes (28%), respectively (all P<0.05), despite heart rate and core temperature reaching similar peak values. However, before exhaustion in both heat stress and normal conditions, cardiac output, leg blood flow, mean arterial pressure, and systemic and leg O2 delivery declined significantly (all 5% to 11%, P<0.05), yet arterial O2 content and leg vascular conductance remained unchanged. Despite increasing leg O2 extraction, leg VO2 declined 5% to 6% before exhaustion in both heat stress and normal conditions, accompanied by enhanced muscle lactate accumulation and ATP and creatine phosphate hydrolysis. CONCLUSIONS: These results demonstrate that in trained humans, severe heat stress reduces VO2max by accelerating the declines in cardiac output and mean arterial pressure that lead to decrements in exercising muscle blood flow, O2 delivery, and O2 uptake. Furthermore, the impaired systemic and skeletal muscle aerobic capacity that precedes fatigue with or without heat stress is largely related to the failure of the heart to maintain cardiac output and O2 delivery to locomotive muscle.
Resumo:
Coronary collaterals are an alternative source of blood supply to myocardium jeopardized by ischaemia. Well-developed coronary collateral arteries in patients with coronary artery disease (CAD) mitigate myocardial infarcts and improve survival.
Resumo:
A universal and robust analytical method for the determination of Δ9-tetrahydrocannabinol (THC) and two of its metabolites Δ9-(11-OH)-tetrahydrocannabinol (11-OH-THC) and 11-nor-Δ9-carboxy-tetrahydrocannabinol (THC-COOH) in human whole blood was developed and validated for use in forensic toxicology. Protein precipitation, integrated solid phase extraction and on-line enrichment followed by high-performance liquid chromatography separation and detection with a triple quadrupole mass spectrometer were combined. The linear ranges used for the three cannabinoids were from 0.5 to 20 ng/mL for THC and 11-OH-THC and from 2.5 to 100 ng/mL for THC-COOH, therefore covering the requirements for forensic use. Correlation coefficients of 0.9980 or better were achieved for all three analytes. No relevant hydrolysis was observed for THC-COOH glucuronide with this procedure--in contrast to our previous GC-MS procedure, which obviously lead to an artificial increase of the THC-COOH concentration due to the hydrolysis of the glucuronide-conjugate occurring at high pH during the phase-transfer catalyzed methylation step.
Resumo:
Hypertension is the leading risk factor for cardiovascular disease. Although accumulating evidence suggests tracking of blood pressure from childhood into adult life, there is little information regarding the relative contributions of genetic, prenatal, biological, behavioral, environmental, and social determinants to childhood blood pressure.
Resumo:
Animal experiments have shown that the coronary circulation is pressure distensible, i.e., myocardial blood volume (MBV) increases with perfusion pressure. In humans, however, corresponding measurements are lacking so far. We sought to quantify parameters reflecting coronary distensibility such as MBV and coronary resistance (CR) during and after coronary angioplasty. Thirty patients with stable coronary artery disease underwent simultaneous coronary perfusion pressure assessment and myocardial contrast echocardiography (MCE) of 37 coronary arteries and their territories during and after angioplasty. MCE yielded MBV and myocardial blood flow (MBF; in ml · min(-1) · g(-1)). Complete data sets were obtained in 32 coronary arteries and their territories from 26 patients. During angioplasty, perfusion pressure, i.e., coronary occlusive pressure, and MBV varied between 9 and 57 mmHg (26.9 ± 11.9 mmHg) and between 1.2 and 14.5 ml/100 g (6.7 ± 3.7 ml/100 g), respectively. After successful angioplasty, perfusion pressure and MBV increased significantly (P < 0.001 for both) and varied between 64 and 118 mmHg (93.5 ± 12.8 mmHg) and between 3.7 and 17.3 ml/100 g (9.8 ± 3.4 ml/100 g), respectively. Mean MBF increased from 31 ± 20 ml · min(-1) · g(-1) during coronary occlusion, reflecting collateral flow, to 121 ± 33 ml · min(-1) · g(-1) (P < 0.01), whereas mean CR, i.e., the ratio of perfusion pressure and MBF, decreased by 20% (P < 0.001). In conclusion, the human coronary circulation is pressure distensible. MCE allows for the quantification of CR and MBV in humans.
Resumo:
Three dimensional, time dependent numerical simulations of healthy and pathological conditions in a model kidney were performed. Blood flow in a kidney is not commonly investigated by computational approach, in contrast for example, to the flow in a heart. The flow in a kidney is characterized by relatively small Reynolds number (100 < Re < 0.01-laminar regime). The presented results give insight into the structure of such flow, which is hard to measure in vivo. The simulations have suggested that venous thrombosis is more likely than arterial thrombosis-higher shear rate observed. The obtained maximum velocity, as a result of the simulations, agrees with the observed in vivo measurements. The time dependent simulations show separation regimes present in the vicinity of the maximum pressure value. The pathological constriction introduced to the arterial geometry leads to the changes in separation structures. The constriction of a single vessel affects flow in the whole kidney. Pathology results in different flow rate values in healthy and affected branches, as well as, different pulsate cycle characteristic for the whole system.
Resumo:
OBJECTIVE: The use of vasopressors for treatment of hypotension in sepsis may have adverse effects on microcirculatory blood flow in the gastrointestinal tract. The aim of this study was to measure the effects of three vasopressors, commonly used in clinical practice, on microcirculatory blood flow in multiple abdominal organs in sepsis. DESIGN: Random order, cross-over design. SETTING: University laboratory. SUBJECTS: Eight sedated and mechanically ventilated pigs. INTERVENTIONS: Pigs were exposed to fecal peritonitis-induced septic shock. Mesenteric artery flow was measured using ultrasound transit time flowmetry. Microcirculatory flow was measured in gastric, jejunal, and colon mucosa; jejunal muscularis; and pancreas, liver, and kidney using multiple-channel laser Doppler flowmetry. Each animal received a continuous intravenous infusion of epinephrine, norepinephrine, and phenylephrine in a dose increasing mean arterial pressure by 20%. The animals were allowed to recover for 60 mins after each drug before the next was started. MEASUREMENTS AND MAIN RESULTS: During infusion of epinephrine (0.8 +/- 0.2 mug/kg/hr), mean arterial pressure increased from 66 +/- 5 to 83 +/- 5 mm Hg and cardiac index increased by 43 +/- 9%. Norepinephrine (0.7 +/- 0.3 mug/kg/hr) increased mean arterial pressure from 70 +/- 4 to 87 +/- 5 mm Hg and cardiac index by 41 +/- 8%. Both agents caused a significant reduction in superior mesenteric artery flow (11 +/- 4%, p < .05, and 26 +/- 6%, p < .01, respectively) and in microcirculatory blood flow in the jejunal mucosa (21 +/- 5%, p < .01, and 23 +/- 3%, p < .01, respectively) and in the pancreas (16 +/- 3%, p < .05, and 8 +/- 3%, not significant, respectively). Infusion of phenylephrine (3.1 +/- 1.0 mug/kg/min) increased mean arterial pressure from 69 +/- 5 to 85 +/- 6 mm Hg but had no effects on systemic, regional, or microcirculatory flow except for a 30% increase in jejunal muscularis flow (p < .01). CONCLUSIONS: Administration of the vasopressors phenylephrine, epinephrine, and norepinephrine failed to increase microcirculatory blood flow in most abdominal organs despite increased perfusion pressure and-in the case of epinephrine and norepinephrine-increased systemic blood flow. In fact, norepinephrine and epinephrine appeared to divert blood flow away from the mesenteric circulation and decrease microcirculatory blood flow in the jejunal mucosa and pancreas. Phenylephrine, on the other hand, appeared to increase blood pressure without affecting quantitative blood flow or distribution of blood flow.
Resumo:
The rapid development of computed tomography (CT) and magnetic resonance imaging (MRI) led to the introduction and establishment in postmortem investigations. The objectives of this preliminary study were to describe the imaging appearances of the early postmortem changes of blood after cessation of the circulation, such as sedimentation, postmortem clotting, and internal livores, and to give a few first suggestions on how to differentiate them from other forensic findings. In the Virtopsy project, 95 human corpses underwent postmortem imaging by CT and MRI prior to traditional autopsy and therefore 44 cases have been investigated in this study. Postmortem alterations as well as the forensic relevant findings of the blood, such as internal or subcutaneous bleedings, are presented on the basis of their imaging appearances in multislice CT and MRI.
Resumo:
Supplementary arginine vasopressin infusion in advanced vasodilatory shock may be accompanied by a decrease in cardiac index and systemic oxygen transport capacity in approximately 40% of patients. While a reduction of cardiac output most frequently occurs in patients with hyperdynamic circulation, it is less often observed in patients with low cardiac index. Infusion of inotropes, such as dobutamine, may be an effective strategy to restore systemic blood flow. However, when administering inotropic drugs, systemic blood flow should be increased to adequately meet systemic demands (assessed by central or mixed venous oxygen saturation) without putting an excessive beta-adrenergic stress on the heart. Overcorrection of cardiac index to hyperdynamic values with inotropes places myocardial oxygen supply at significant risk.
Resumo:
BACKGROUND: Current practice at high-frequency oscillatory ventilation (HFOV) initiation is a stepwise increase of the constant applied airway pressure to achieve lung recruitment. We hypothesized that HFOV would lead to more adverse cerebral haemodynamics than does pressure controlled ventilation (PCV) in the presence of experimental intracranial hypertension (IH) and acute lung injury (ALI) in pigs with similar mean airway pressure settings. METHODS: In 12 anesthetized pigs (24-27 kg) with IH and ALI, mean airway pressure (P(mean)) was increased (to 20, 25, 30 cm H(2)O every 30 min), either with HFOV or with PCV. The order of the two ventilatory modes (cross-over) was randomized. Mean arterial pressure (MAP), intracranial pressure (ICP), cerebral perfusion pressure (CPP), cerebral blood flow (CBF) (fluorescent microspheres), cerebral metabolism, transpulmonary pressures (P(T)), and blood gases were determined at each P(mean) setting. Our end-points of interest related to the cerebral circulation were ICP, CPP and CBF. RESULTS: CBF and cerebral metabolism were unaffected but there were no differences between the values for HFOV and PCV. ICP increased slightly (HFOV median +1 mm Hg, P<0.05; PCV median +2 mm Hg, P<0.05). At P(mean) setting of 30 cm H(2)O, CPP decreased during HFOV (median -13 mm Hg, P<0.05) and PCV (median -17 mm Hg, P<0.05) paralleled by a decrease of MAP (HFOV median -11 mm Hg, P<0.05; PCV median -13 mm Hg, P<0.05). P(T) increased (HFOV median +8 cm H(2)O, P<0.05; PCV median +8 cm H(2)O, P<0.05). Oxygenation improved and normocapnia maintained by HFOV and PCV. There were no differences between both ventilatory modes. CONCLUSIONS: In animals with elevated ICP and ALI, both ventilatory modes had effects upon cerebral haemodynamics. The effects upon cerebral haemodynamics were dependent of the P(T) level without differences between both ventilatory modes at similar P(mean) settings. HFOV seems to be a possible alternative ventilatory strategy when MAP deterioration can be avoided.
Resumo:
OBJECTIVE: The standard heart-lung machine is a major trigger of systemic inflammatory response and the morbidity attributed to conventional extracorporeal circulation (CECC) is still significant. Reduction of blood-artificial surface contact and reduction of priming volume are principal aims in minimized extracorporeal circulation (MECC) cardiopulmonary bypass systems. The aim of this paper is to give an overview of the literature and to present our experience with the MECC-smart suction system. METHODS AND RESULTS: At our institution, 1799 patients underwent isolated coronary artery bypass grafting (CABG) surgery, 1372 with a MECC-smart suction system and 427 with CECC. All in-hospital data were assessed and the results were compared between the 2 groups. Patient characteristics and the distribution of EuroSCORE risk profile in our collective were similar between both groups. Average age in the MECC collective was 67.5 +/- 11.4 years and average EuroSCORE was 5.0 +/- 1.5. Average number of distal anastomoses was similar to the average number encountered in patients undergoing CABG surgery with CECC (3.3 +/- 1.0 for MECC versus 3.2 +/- 1.1 for CECC; P = ns). Myocardial protection is superior in MECC patients with lower postoperative maximal cTnI values (11.0 +/- 10.8 micromol/L for MECC versus 24.7 +/- 25.3 micromol/L for CECC; P < .05). Postoperative recovery was faster in patients operated on with the MECC-smart suction system and discharge from the hospital was earlier than for CECC patients (7.4 +/- 1.9 days for MECC versus 8.8 +/- 3.8 days for CECC; P < .05). CONCLUSIONS: The MECC-smart suction system is a safe perfusion technique for CABG surgery. In patients operated on with this system, the clinical outcome seems to be better than in patients operated on with CECC. This promising and less damaging perfusion technology has the potential to replace CECC systems in CABG surgery.