926 resultados para Block-Jacobi matrices
Resumo:
It is well known that the space-time block codes (STBCs) from complex orthogonal designs (CODs) are single-symbol decodable/symbol-by-symbol decodable (SSD). The weight matrices of the square CODs are all unitary and obtainable from the unitary matrix representations of Clifford Algebras when the number of transmit antennas n is a power of 2. The rate of the square CODs for n = 2(a) has been shown to be a+1/2(a) complex symbols per channel use. However, SSD codes having unitary-weight matrices need not be CODs, an example being the minimum-decoding-complexity STBCs from quasi-orthogonal designs. In this paper, an achievable upper bound on the rate of any unitary-weight SSD code is derived to be a/2(a)-1 complex symbols per channel use for 2(a) antennas, and this upper bound is larger than that of the CODs. By way of code construction, the interrelationship between the weight matrices of unitary-weight SSD codes is studied. Also, the coding gain of all unitary-weight SSD codes is proved to be the same for QAM constellations and conditions that are necessary for unitary-weight SSD codes to achieve full transmit diversity and optimum coding gain are presented.
Resumo:
In the preparation of synthetic conotoxins containing multiple disulfide bonds, oxidative folding can produce numerous permutations of disulfide bond connectivities. Establishing the native disulfide connectivities thus presents a significant challenge when the venom-derived peptide is not available, as is increasingly the case when conotoxins are identified from cDNA sequences. Here, we investigate the disulfide connectivity of mu-conotoxin KIIIA, which was predicted originally to have a C1-C9,C2-C15,C4-C16] disulfide pattern based on homology with closely related mu-conotoxins. The two major isomers of synthetic mu-KIIIA formed during oxidative folding were purified and their disulfide connectivities mapped by direct mass spectrometric collision-induced dissociation fragmentation of the disulfide-bonded polypeptides. Our results show that the major oxidative folding product adopts a C1-C15,C2-C9,C4-C16] disulfide connectivity, while the minor product adopts a C1-C16,C2-C9,C4-C15] connectivity. Both of these peptides were potent blockers of Na(v)1.2 (K-d values of 5 and 230 nM, respectively). The solution structure for mu-KIIIA based on nuclear magnetic resonance data was recalculated with the C1-C15,C2-C9,C4-C16] disulfide pattern; its structure was very similar to the mu-KIIIA structure calculated with the incorrect C1-C9,C2-C15,C4-C16] disulfide pattern, with an alpha-helix spanning residues 7-12. In addition, the major folding isomers of mu-KIIIB, an N-terminally extended isoform of mu-KIIIA, identified from its cDNA sequence, were isolated. These folding products had the same disulfide connectivities as mu-KIIIA, and both blocked Na(v)1.2 (K-d values of 470 and 26 nM, respectively). Our results establish that the preferred disulfide pattern of synthetic mu-KIIIA and mu-KIIIB folded in vitro is 1-5/2-4/3-6 but that other disulfide isomers are also potent sodium channel blockers. These findings raise questions about the disulfide pattern(s) of mu-KIIIA in the venom of Conus kinoshitai; indeed, the presence of multiple disulfide isomers in the venom could provide a means of further expanding the snail's repertoire of active peptides.
Resumo:
In this paper we study the problem of designing SVM classifiers when the kernel matrix, K, is affected by uncertainty. Specifically K is modeled as a positive affine combination of given positive semi definite kernels, with the coefficients ranging in a norm-bounded uncertainty set. We treat the problem using the Robust Optimization methodology. This reduces the uncertain SVM problem into a deterministic conic quadratic problem which can be solved in principle by a polynomial time Interior Point (IP) algorithm. However, for large-scale classification problems, IP methods become intractable and one has to resort to first-order gradient type methods. The strategy we use here is to reformulate the robust counterpart of the uncertain SVM problem as a saddle point problem and employ a special gradient scheme which works directly on the convex-concave saddle function. The algorithm is a simplified version of a general scheme due to Juditski and Nemirovski (2011). It achieves an O(1/T-2) reduction of the initial error after T iterations. A comprehensive empirical study on both synthetic data and real-world protein structure data sets show that the proposed formulations achieve the desired robustness, and the saddle point based algorithm outperforms the IP method significantly.
Resumo:
Acoustic modeling using mixtures of multivariate Gaussians is the prevalent approach for many speech processing problems. Computing likelihoods against a large set of Gaussians is required as a part of many speech processing systems and it is the computationally dominant phase for Large Vocabulary Continuous Speech Recognition (LVCSR) systems. We express the likelihood computation as a multiplication of matrices representing augmented feature vectors and Gaussian parameters. The computational gain of this approach over traditional methods is by exploiting the structure of these matrices and efficient implementation of their multiplication. In particular, we explore direct low-rank approximation of the Gaussian parameter matrix and indirect derivation of low-rank factors of the Gaussian parameter matrix by optimum approximation of the likelihood matrix. We show that both the methods lead to similar speedups but the latter leads to far lesser impact on the recognition accuracy. Experiments on 1,138 work vocabulary RM1 task and 6,224 word vocabulary TIMIT task using Sphinx 3.7 system show that, for a typical case the matrix multiplication based approach leads to overall speedup of 46 % on RM1 task and 115 % for TIMIT task. Our low-rank approximation methods provide a way for trading off recognition accuracy for a further increase in computational performance extending overall speedups up to 61 % for RM1 and 119 % for TIMIT for an increase of word error rate (WER) from 3.2 to 3.5 % for RM1 and for no increase in WER for TIMIT. We also express pairwise Euclidean distance computation phase in Dynamic Time Warping (DTW) in terms of matrix multiplication leading to saving of approximately of computational operations. In our experiments using efficient implementation of matrix multiplication, this leads to a speedup of 5.6 in computing the pairwise Euclidean distances and overall speedup up to 3.25 for DTW.
Resumo:
Motivated by the recent Coherent Space-Time Shift Keying (CSTSK) philosophy, we construct new dispersion matrices for rotationally invariant PSK signaling sets. Given a specific PSK signal constellation, the dispersion matrices of the existing CSTSK scheme were chosen by maximizing the mutual information over randomly generated sets of dispersion matrices. In this contribution we propose a general method for constructing a set of structured dispersion matrices for arbitrary PSK signaling sets using Field Extension (FE) codes and then study the attainable Symbol Error Rate (SER) performance of some example constructions. We demonstrate that the proposed dispersion scheme is capable of outperforming the existing dispersion arrangement at medium to high SNRs.
Resumo:
We study the tradeoff between the average error probability and the average queueing delay of messages which randomly arrive to the transmitter of a point-to-point discrete memoryless channel that uses variable rate fixed codeword length random coding. Bounds to the exponential decay rate of the average error probability with average queueing delay in the regime of large average delay are obtained. Upper and lower bounds to the optimal average delay for a given average error probability constraint are presented. We then formulate a constrained Markov decision problem for characterizing the rate of transmission as a function of queue size given an average error probability constraint. Using a Lagrange multiplier the constrained Markov decision problem is then converted to a problem of minimizing the average cost for a Markov decision problem. A simple heuristic policy is proposed which approximately achieves the optimal average cost.
Resumo:
Decoding of linear space-time block codes (STBCs) with sphere-decoding (SD) is well known. A fast-version of the SD known as fast sphere decoding (FSD) has been recently studied by Biglieri, Hong and Viterbo. Viewing a linear STBC as a vector space spanned by its defining weight matrices over the real number field, we define a quadratic form (QF), called the Hurwitz-Radon QF (HRQF), on this vector space and give a QF interpretation of the FSD complexity of a linear STBC. It is shown that the FSD complexity is only a function of the weight matrices defining the code and their ordering, and not of the channel realization (even though the equivalent channel when SD is used depends on the channel realization) or the number of receive antennas. It is also shown that the FSD complexity is completely captured into a single matrix obtained from the HRQF. Moreover, for a given set of weight matrices, an algorithm to obtain a best ordering of them leading to the least FSD complexity is presented. The well known classes of low FSD complexity codes (multi-group decodable codes, fast decodable codes and fast group decodable codes) are presented in the framework of HRQF.
Resumo:
Most studies involving cement-stabilized soil blocks (CSSB) concern material properties, such as the characteristics of erosion and strength and how the composition of the block affects these properties. Moreover, research has been conducted on the performance of various mortars, investigating their material properties and the tensile bond strength between CSSB units and mortar. In contrast, very little is currently known about CSSB masonry structural behavior. Because structural design codes of traditional masonry buildings were well developed over the past century, many of the same principles may be applicable to CSSB masonry buildings. This paper details the topic of flexural behavior of CSSB masonry walls and whether the Masonry Standards Joint Committee (MSJC) code can be applied to this material for improved safety of such buildings. DOI: 10.1061/(ASCE)MT.1943-5533.0000566. (C) 2013 American Society of Civil Engineers.
Resumo:
We propose a novel method of constructing Dispersion Matrices (DM) for Coherent Space-Time Shift Keying (CSTSK) relying on arbitrary PSK signal sets by exploiting codes from division algebras. We show that classic codes from Cyclic Division Algebras (CDA) may be interpreted as DMs conceived for PSK signal sets. Hence various benefits of CDA codes such as their ability to achieve full diversity are inherited by CSTSK. We demonstrate that the proposed CDA based DMs are capable of achieving a lower symbol error ratio than the existing DMs generated using the capacity as their optimization objective function for both perfect and imperfect channel estimation.
Resumo:
The problem of designing good space-time block codes (STBCs) with low maximum-likelihood (ML) decoding complexity has gathered much attention in the literature. All the known low ML decoding complexity techniques utilize the same approach of exploiting either the multigroup decodable or the fast-decodable (conditionally multigroup decodable) structure of a code. We refer to this well-known technique of decoding STBCs as conditional ML (CML) decoding. In this paper, we introduce a new framework to construct ML decoders for STBCs based on the generalized distributive law (GDL) and the factor-graph-based sum-product algorithm. We say that an STBC is fast GDL decodable if the order of GDL decoding complexity of the code, with respect to the constellation size, is strictly less than M-lambda, where lambda is the number of independent symbols in the STBC. We give sufficient conditions for an STBC to admit fast GDL decoding, and show that both multigroup and conditionally multigroup decodable codes are fast GDL decodable. For any STBC, whether fast GDL decodable or not, we show that the GDL decoding complexity is strictly less than the CML decoding complexity. For instance, for any STBC obtained from cyclic division algebras which is not multigroup or conditionally multigroup decodable, the GDL decoder provides about 12 times reduction in complexity compared to the CML decoder. Similarly, for the Golden code, which is conditionally multigroup decodable, the GDL decoder is only half as complex as the CML decoder.
Resumo:
In this letter, we propose a reduced-complexity implementation of partial interference cancellation group decoder with successive interference cancellation (PIC-GD-SIC) by employing the theory of displacement structures. The proposed algorithm exploits the block-Toeplitz structure of the effective matrix and chooses an ordering of the groups such that the zero-forcing matrices associated with the various groups are obtained through Schur recursions without any approximations. We show using an example that the proposed implementation offers a significantly reduced computational complexity compared to the direct approach without any loss in performance.
Resumo:
In this work, the grid mismatch problem for a single snapshot direction of arrival estimation problem is studied. We derive a Bayesian Cramer-Rao bound for the grid mismatch problem with the errors in variables model and propose a block sparse estimator for grid matching and sparse recovery.
Resumo:
Construction of high rate Space Time Block Codes (STBCs) with low decoding complexity has been studied widely using techniques such as sphere decoding and non Maximum-Likelihood (ML) decoders such as the QR decomposition decoder with M paths (QRDM decoder). Recently Ren et al., presented a new class of STBCs known as the block orthogonal STBCs (BOSTBCs), which could be exploited by the QRDM decoders to achieve significant decoding complexity reduction without performance loss. The block orthogonal property of the codes constructed was however only shown via simulations. In this paper, we give analytical proofs for the block orthogonal structure of various existing codes in literature including the codes constructed in the paper by Ren et al. We show that codes formed as the sum of Clifford Unitary Weight Designs (CUWDs) or Coordinate Interleaved Orthogonal Designs (CIODs) exhibit block orthogonal structure. We also provide new construction of block orthogonal codes from Cyclic Division Algebras (CDAs) and Crossed-Product Algebras (CPAs). In addition, we show how the block orthogonal property of the STBCs can be exploited to reduce the decoding complexity of a sphere decoder using a depth first search approach. Simulation results of the decoding complexity show a 30% reduction in the number of floating point operations (FLOPS) of BOSTBCs as compared to STBCs without the block orthogonal structure.
Resumo:
Tight fusion frames which form optimal packings in Grassmannian manifolds are of interest in signal processing and communication applications. In this paper, we study optimal packings and fusion frames having a specific structure for use in block sparse recovery problems. The paper starts with a sufficient condition for a set of subspaces to be an optimal packing. Further, a method of using optimal Grassmannian frames to construct tight fusion frames which form optimal packings is given. Then, we derive a lower bound on the block coherence of dictionaries used in block sparse recovery. From this result, we conclude that the Grassmannian fusion frames considered in this paper are optimal from the block coherence point of view. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Perfect space-time block codes (STBCs) are based on four design criteria-full-rateness, nonvanishing determinant, cubic shaping, and uniform average transmitted energy per antenna per time slot. Cubic shaping and transmission at uniform average energy per antenna per time slot are important from the perspective of energy efficiency of STBCs. The shaping criterion demands that the generator matrix of the lattice from which each layer of the perfect STBC is carved be unitary. In this paper, it is shown that unitariness is not a necessary requirement for energy efficiency in the context of space-time coding with finite input constellations, and an alternative criterion is provided that enables one to obtain full-rate (rate of complex symbols per channel use for an transmit antenna system) STBCs with larger normalized minimum determinants than the perfect STBCs. Further, two such STBCs, one each for 4 and 6 transmit antennas, are presented and they are shown to have larger normalized minimum determinants than the comparable perfect STBCs which hitherto had the best-known normalized minimum determinants.