846 resultados para Bit Error Rate
Resumo:
We present information-theory analysis of the tradeoff between bit-error rate improvement and the data-rate loss using skewed channel coding to suppress pattern-dependent errors in digital communications. Without loss of generality, we apply developed general theory to the particular example of a high-speed fiber communication system with a strong patterning effect. © 2007 IEEE.
Resumo:
A number of critical issues for dual-polarization single- and multi-band optical orthogonal-frequency division multiplexing (DPSB/ MB-OFDM) signals are analyzed in dispersion compensation fiber (DCF)-free long-haul links. For the first time, different DP crosstalk removal techniques are compared, the maximum transmission-reach is investigated, and the impact of subcarrier number and high-level modulation formats are explored thoroughly. It is shown, for a bit-error-rate (BER) of 10-3, 2000 km of quaternary phase-shift keying (QPSK) DP-MBOFDM transmission is feasible. At high launched optical powers (LOP), maximum-likelihood decoding can extend the LOP of 40 Gb/s QPSK DPSB- OFDM at 2000 km by 1.5 dB compared to zero-forcing. For a 100 Gb/s DP-MB-OFDM system, a high number of subcarriers contribute to improved BER but at the cost of digital signal processing computational complexity, whilst by adapting the cyclic prefix length the BER can be improved for a low number of subcarriers. In addition, when 16-quadrature amplitude modulation (16QAM) is employed the digital-toanalogue/ analogue-to-digital converter (DAC/ADC) bandwidth is relaxed with a degraded BER; while the 'circular' 8QAM is slightly superior to its 'rectangular' form. Finally, the transmission of wavelength-division multiplexing DP-MB-OFDM and single-carrier DP-QPSK is experimentally compared for up to 500 Gb/s showing great potential and similar performance at 1000 km DCF-free G.652 line. © 2014 Optical Society of America.
Resumo:
This letter experimentally demonstrates a visible light communication system using a 350-kHz polymer lightemitting diode operating at a total bit rate of 19 Mb/s with a bit error rate (BER) of 10-6and 20 Mb/s at the forward error correction limit for the first time. This represents a remarkable net data rate gain of ~55 times. The modulation format adopted is ON-OFF keying in conjunction with an artificial neural network classifier implemented as an equalizer. The number of neurons used in the experiment is varied from the set N = {5, 10, 20, 30, 40} with 40 neurons offering the best performance at 19 Mb/s and the BER of 10-6.
Resumo:
Long-haul high speed optical transmission systems are significantly distorted by the interplay between the electronic chromatic dispersion (CD) equalization and the local oscillator (LO) laser phase noise, which leads to an effect of equalization enhanced phase noise (EEPN). The EEPN degrades the performance of optical communication systems severely with the increment of fiber dispersion, LO laser linewidth, symbol rate, and modulation format. In this paper, we present an analytical model for evaluating the performance of bit-error-rate (BER) versus signal-to-noise ratio (SNR) in the n-level phase shift keying (n-PSK) coherent transmission system employing differential carrier phase estimation (CPE), where the influence of EEPN is considered. Theoretical results based on this model have been investigated for the differential quadrature phase shift keying (DQPSK), the differential 8-PSK (D8PSK), and the differential 16-PSK (D16PSK) coherent transmission systems. The influence of EEPN on the BER performance in term of the fiber dispersion, the LO phase noise, the symbol rate, and the modulation format are analyzed in detail. The BER behaviors based on this analytical model achieve a good agreement with previously reported BER floors influenced by EEPN. Further simulations have also been carried out in the differential CPE considering EEPN. The results indicate that this analytical model can give an accurate prediction for the DQPSK system, and a leading-order approximation for the D8PSK and the D16PSK systems.
Resumo:
We present a comparative study of the influence of dispersion induced phase noise for n-level PSK systems. From the analysis, we conclude that the phase noise influence for classical homodyne/heterodyne PSK systems is entirely determined by the modulation complexity (expressed in terms of constellation diagram) and the analogue demodulation format. On the other hand, the use of digital signal processing (DSP) in homodyne/intradyne systems renders a fiber length dependence originating from the generation of equalization enhanced phase noise. For future high capacity systems, high constellations must be used in order to lower the symbol rate to practically manageable speeds, and this fact puts severe requirements to the signal and local oscillator (LO) linewidths. Our results for the bit-error-rate (BER) floor caused by the phase noise influence in the case of QPSK, 16PSK and 64PSK systems outline tolerance limitations for the LO performance: 5 MHz linewidth (at 3-dB level) for 100 Gbit/s QPSK; 1 MHz for 400 Gbit/s QPSK; 0.1 MHz for 400 Gbit/s 16PSK and 1 Tbit/s 64PSK systems. This defines design constrains for the phase noise impact in distributed-feed-back (DFB) or distributed-Bragg-reflector (DBR) semiconductor lasers, that would allow moving the system capacity from 100 Gbit/s system capacity to 400 Gbit/s in 3 years (1 Tbit/s in 5 years). It is imperative at the same time to increase the analogue to digital conversion (ADC) speed such that the single quadrature symbol rate goes from today's 25 GS/s to 100 GS/s (using two samples per symbol). © 2014 by Walter de Gruyter Berlin/Boston.
Resumo:
The relatively high phase noise of coherent optical systems poses unique challenges for forward error correction (FEC). In this letter, we propose a novel semianalytical method for selecting combinations of interleaver lengths and binary Bose-Chaudhuri-Hocquenghem (BCH) codes that meet a target post-FEC bit error rate (BER). Our method requires only short pre-FEC simulations, based on which we design interleavers and codes analytically. It is applicable to pre-FEC BER ∼10-3, and any post-FEC BER. In addition, we show that there is a tradeoff between code overhead and interleaver delay. Finally, for a target of 10-5, numerical simulations show that interleaver-code combinations selected using our method have post-FEC BER around 2× target. The target BER is achieved with 0.1 dB extra signal-to-noise ratio.
Resumo:
In this paper, we analyze the sensitivities of coherent optical receivers and microwave receivers. We derive theoretical limits of signal-to-noise ratio and bit error rate. By applying a generic approach to a broad range of receivers, we can compare their performance directly. Other publications have considered some of these receivers. However, their diverse nature obscures the big picture. Using our results as a unifying platform, previous publications can be compared and discrepancies between them identified.
Resumo:
Forward error correction (FEC) plays a vital role in coherent optical systems employing multi-level modulation. However, much of coding theory assumes that additive white Gaussian noise (AWGN) is dominant, whereas coherent optical systems have significant phase noise (PN) in addition to AWGN. This changes the error statistics and impacts FEC performance. In this paper, we propose a novel semianalytical method for dimensioning binary Bose-Chaudhuri-Hocquenghem (BCH) codes for systems with PN. Our method involves extracting statistics from pre-FEC bit error rate (BER) simulations. We use these statistics to parameterize a bivariate binomial model that describes the distribution of bit errors. In this way, we relate pre-FEC statistics to post-FEC BER and BCH codes. Our method is applicable to pre-FEC BER around 10-3 and any post-FEC BER. Using numerical simulations, we evaluate the accuracy of our approach for a target post-FEC BER of 10-5. Codes dimensioned with our bivariate binomial model meet the target within 0.2-dB signal-to-noise ratio.
Resumo:
We report the impact of longitudinal signal power profile on the transmission performance of coherently-detected 112 Gb/s m-ary polarization multiplexed quadrature amplitude modulation system after compensation of deterministic nonlinear fibre impairments. Performance improvements up to 0.6 dB (Q(eff)) are reported for a non-uniform transmission link power profile. Further investigation reveals that the evolution of the transmission performance with power profile management is fully consistent with the parametric amplification of the amplified spontaneous emission by the signal through four-wave mixing. In particular, for a non-dispersion managed system, a single-step increment of 4 dB in the amplifier gain, with respect to a uniform gain profile, at similar to 2/3(rd) of the total reach considerably improves the transmission performance for all the formats studied. In contrary a negative-step profile, emulating a failure (gain decrease or loss increase), significantly degrades the bit-error rate.
Resumo:
This reported work significantly extends the reach of 10Gbit/s on-off keying singlemode fibre (SMF) transmission using full-field based electronic dispersion compensation (EDC) to 900 km. In addition, the EDC balances the complexity and the adaptation capability by employing a simple dispersive transmission line with static parameters for coarse dispersion compensation and 16-state maximum likelihood sequence estimation with Gaussian approximation based channel training for adaptive impairment trimming. Improved adaptation times of less than 400 ns for a bit error rate target of 10-3 over distances ranging from 0 to 900 km are reported.
Resumo:
Direct computation of the bit-error rate (BER) and laboratory experiments are used to assess the performance of a non-slope matched transoceanic submarine transmission link operating at 20Gb/s channel rate and employing return-to-zero differential-phase shift keying (RZ-DPSK) signal modulation. Using this system as an example, we compare the accuracies of the existing theoretical approaches to the BER estimation for the RZ-DPSK format. © 2007 Optical Society of America.
Resumo:
In this talk we investigate the usage of spectrally shaped amplified spontaneous emission (ASE) in order to emulate highly dispersed wavelength division multiplexed (WDM) signals in an optical transmission system. Such a technique offers various simplifications to large scale WDM experiments. Not only does it offer a reduction in transmitter complexity, removing the need for multiple source lasers, it potentially reduces the test and measurement complexity by requiring only the centre channel of a WDM system to be measured in order to estimate WDM worst case performance. The use of ASE as a test and measurement tool is well established in optical communication systems and several measurement techniques will be discussed [1, 2]. One of the most prevalent uses of ASE is in the measurement of receiver sensitivity where ASE is introduced in order to degrade the optical signal to noise ratio (OSNR) and measure the resulting bit error rate (BER) at the receiver. From an analytical point of view noise has been used to emulate system performance, the Gaussian Noise model is used as an estimate of highly dispersed signals and has had consider- able interest [3]. The work to be presented here extends the use of ASE by using it as a metric to emulate highly dispersed WDM signals and in the process reduce WDM transmitter complexity and receiver measurement time in a lab environment. Results thus far have indicated [2] that such a transmitter configuration is consistent with an AWGN model for transmission, with modulation format complexity and nonlinearities playing a key role in estimating the performance of systems utilising the ASE channel emulation technique. We conclude this work by investigating techniques capable of characterising the nonlinear and damage limits of optical fibres and the resultant information capacity limits. REFERENCES McCarthy, M. E., N. Mac Suibhne, S. T. Le, P. Harper, and A. D. Ellis, “High spectral efficiency transmission emulation for non-linear transmission performance estimation for high order modulation formats," 2014 European Conference on IEEE Optical Communication (ECOC), 2014. 2. Ellis, A., N. Mac Suibhne, F. Gunning, and S. Sygletos, “Expressions for the nonlinear trans- mission performance of multi-mode optical fiber," Opt. Express, Vol. 21, 22834{22846, 2013. Vacondio, F., O. Rival, C. Simonneau, E. Grellier, A. Bononi, L. Lorcy, J. Antona, and S. Bigo, “On nonlinear distortions of highly dispersive optical coherent systems," Opt. Express, Vol. 20, 1022-1032, 2012.
Resumo:
Nonlinear Fourier transform (NFT) and eigenvalue communication with the use of nonlinear signal spectrum (both discrete and continuous), have been recently discussed as promising transmission methods to combat fiber nonlinearity impairments. In this paper, for the first time, we demonstrate the generation, detection and transmission performance over transoceanic distances of 10 Gbaud and nonlinear inverse synthesis (NIS) based signal (4 Gb/s line rate), in which the transmitted information is encoded directly onto the continuous part of the signal nonlinear spectrum. By applying effective digital signal processing techniques, a reach of 7344 km was achieved with a bit-error-rate (BER) (2.1×10-2) below the 20% FEC threshold. This represents an improvement by a factor of ~12 in data capacity x distance product compared with other previously demonstrated NFT-based systems, showing a significant advance in the active research area of NFT-based communication systems.
Resumo:
In this work we introduce the periodic nonlinear Fourier transform (PNFT) and propose a proof-of-concept communication system based on it by using a simple waveform with known nonlinear spectrum (NS). We study the performance (addressing the bit-error-rate (BER), as a function of the propagation distance) of the transmission system based on the use of the PNFT processing method and show the benefits of the latter approach. By analysing our simulation results for the system with lumped amplification, we demonstrate the decent potential of the new processing method.
Resumo:
Orthogonal Frequency-Division Multiplexing (OFDM) has been proved to be a promising technology that enables the transmission of higher data rate. Multicarrier Code-Division Multiple Access (MC-CDMA) is a transmission technique which combines the advantages of both OFDM and Code-Division Multiplexing Access (CDMA), so as to allow high transmission rates over severe time-dispersive multi-path channels without the need of a complex receiver implementation. Also MC-CDMA exploits frequency diversity via the different subcarriers, and therefore allows the high code rates systems to achieve good Bit Error Rate (BER) performances. Furthermore, the spreading in the frequency domain makes the time synchronization requirement much lower than traditional direct sequence CDMA schemes. There are still some problems when we use MC-CDMA. One is the high Peak-to-Average Power Ratio (PAPR) of the transmit signal. High PAPR leads to nonlinear distortion of the amplifier and results in inter-carrier self-interference plus out-of-band radiation. On the other hand, suppressing the Multiple Access Interference (MAI) is another crucial problem in the MC-CDMA system. Imperfect cross-correlation characteristics of the spreading codes and the multipath fading destroy the orthogonality among the users, and then cause MAI, which produces serious BER degradation in the system. Moreover, in uplink system the received signals at a base station are always asynchronous. This also destroys the orthogonality among the users, and hence, generates MAI which degrades the system performance. Besides those two problems, the interference should always be considered seriously for any communication system. In this dissertation, we design a novel MC-CDMA system, which has low PAPR and mitigated MAI. The new Semi-blind channel estimation and multi-user data detection based on Parallel Interference Cancellation (PIC) have been applied in the system. The Low Density Parity Codes (LDPC) has also been introduced into the system to improve the performance. Different interference models are analyzed in multi-carrier communication systems and then the effective interference suppression for MC-CDMA systems is employed in this dissertation. The experimental results indicate that our system not only significantly reduces the PAPR and MAI but also effectively suppresses the outside interference with low complexity. Finally, we present a practical cognitive application of the proposed system over the software defined radio platform.