942 resultados para Birge Sponer vibrational energy levels extrapolation
Resumo:
This study evaluated the effects of strain, stocking density and dietary energy level on the feathering of broiler chickens. Four trials were carried out between September 2000 and April 2002. There were 10,685 broiler chicks from the strains Ross 308, Cobb 500, Hybro PG, Hubbard, MPK, and Isa Vedette. The bids were reared at stocking densities varying between 10 and 16 birds/m² and were given diets containing different metabolizable energy levels. Broiler feathering was evaluated either by atrributing scores from 1 to 10 to feather covering along the thigh and back (visual inspection), or by determining the percentage weight of the feathers at 28 and 42 days of age. Increasing rearing densities resulted in poorer feathering, mainly if 12 or 13 birds/m² were compared with 16 birds/m². The strains showed different feathering; it was better in Cobb 500 and MPK birds, whereas Hubbard birds showed poorer feathering, mostly along the back. The energy level in the diet has also affected feathering scores. Medium energy level resulted in better feathering along the back at 28 days, and the low level, in better feathering along the thigh at 35 days of age. Finally, feather scores were better in females than in males.
Resumo:
The A (2)Sigma(+) and X(2)Pi electronic states of the SiP species have been investigated theoretically at a very high level of correlation treatment (CASSCF/MRSDCI). Very accurate potential energy curves are presented for both states, as well as the associated spectroscopic constants as derived from the vib-rotational energy levels determined by means of the numerical solution of the radial Schrodinger equation. Electronic transition moment function, oscillator strengths, Einstein coefficients for spontaneous emission, and Franck-Condon factors for the A(2)Sigma(+)-X(2)Pi system have been calculated. Dipole moment functions and radiative lifetimes for both states have also been determined. Spin-orbit coupling constants are also reported. The radiative lifetimes for the A(2)Sigma(+) state, taking into account the spin-orbit diagonal correction to the X(2)Pi state, decrease from a value of 138 ms at v' = 0 to 0.48 ms at v' = 8, and, for the X(2)Pi state, from 2.32 s at v = 1 to 0.59 s at v = 5. Vibrational and rotational transitions are expected to be relatively strong.
Resumo:
In this work we propose the study of the spectroscopy properties and the energy level location of Ce(3+) and Pr(3+) in Gd(2)O(2)S, along with the effects of Ce(4+) (Ce(2)O(2)S(2)) incorporation in Gd(2)O(2)S and Gd(2)O(2)S: Pr(3+) in order to understand the formation and position of the associated defects energy levels in relation to the band structure of Gd(2)O(2)S and Pr(3+) energy levels. Ce-, Pr(3+)-doped and Pr(3+), Ce-doped Gd(2)O(2)S were prepared by the sulfidization of a basic gadolinium carbonate with S(8) using H(2)/N(2) (3.0/97.0%) and air during the firing of the precursor. Samples were analyzed by X-ray diffraction in order to guarantee the formation of the Gd(2)O(2)S single phase. Diffuse reflectance spectroscopy and luminescent measurements (emission/excitation) were used to locate Ce(3+), Pr(3+) and defects energy levels in relation to the band structure of Gd(2)O(2)S. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
Avaliaram-se as exigências nutricionais de proteína e energia em juvenis de acará-bandeira (Pterophyllum scalare). Utilizou-se delineamento inteiramente casualizado, em esquema fatorial 3 × 2, com três níveis de proteína bruta (26, 30 e 34%), dois de energia digestível (3.100 e 3.300 kcal/kg de ração) e três repetições. Juvenis com peso médio de 2,33 ± 0,26 g foram distribuídos em aquários contendo 25 litros de água, temperatura controlada (26 ± 1ºC) e filtro biológico, na densidade de estocagem de seis animais por aquário. Os peixes foram alimentados à vontade às 9, 14 e 16h30. Na análise do desempenho produtivo, foram avaliados o peso final, o comprimento final, o ganho de peso, o consumo de ração, a conversão alimentar, a taxa de crescimento específico, a taxa de eficiência protéica e o fator de condição. As dietas contendo 26% PB proporcionaram maiores valores para taxa de eficiência protéica apenas em relação às dietas contendo 34% PB. As exigências nutricionais de proteína e energia em juvenis de acará-bandeira podem ser atendidas com dietas contendo 26% PB e 3.100 kcal ED/kg.
Resumo:
Glass samples with the composition (mol%) 80TeO(2)-10Nb(2)O(5)-5K(2)O-5Li(2)O, stable against crystallization, were prepared containing Yb3+, Tm3+ and Ho3+. The energy transfer and energy back transfer mechanisms in samples containing 5% Yb3+-5% Tm3+ and 5% Yb3+-5% Tm3+-0.5% Ho3+ were estimated by measuring the absorption and fluorescence spectra together with the time dependence of the Yb3+ F-2(5/2) excited state. A good fit for the luminescence time evolution was obtained with the Yokota-Tanimoto's diffusion-limited model. The up-conversion fluorescence was also studied in 5% Yb-5% Tm. 5% Yb-0.5% Ho and 5% Yb-5% Tm-0.5% Ho tellurite glasses under laser excitation at 975 nm. Strong emission was observed from (1)G(4) and F-3(2) Tm3+ energy levels in all samples. The S-5(2) Ho3+ emission was observed only in Yb3+Ho3+ samples being completely quenched in Yb3+/Tm3+/Tm3+ samples. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
A new ''Ritz'' program has been used for revising and expanding the assignment of the Fourier transform infrared and far-infrared spectrum of CH3OH. This program evaluates the energy levels involved in the assigned transitions by the Rydberg-Ritz combination principle and can tackle such perturbations as Fermi-type resonances or Coriolis interactions. Up to now this program has evaluated the energies of 2768 levels belonging to A-type symmetry and 4133 levels belonging to E-type symmetry of CH3OH. Here we present the assignment of almost 9600 lines between 350 and 950 cm(-1). The Taylor expansion coefficients for evaluating the energies of the levels involved in the transitions are also given. All of the lines presented in this paper correspond to transitions involving torsionally excited levels within the ground vibrational state. (C) 1995 Academic Press, Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In the present investigation some spectroscopic properties of several lanthanide squarate hydrates are reported. The Raman spectra show the same distinctive Jahn-Teller intensity pattern for non-totally symmetric modes, as previously observed for the free anion. In the case of the terbium salt, the Tb3+ emission is very intense even at room temperature, revealing an efficient excitation via the ligand electronic levels. The Tb3+ dilution in Gd3+ or La3+ hosts increases this excitation efficiency without any appreciable variation in the 5D4 excited-state lifetime. However, the Eu3+ emission is very weak, with excited states located above the 5D2 level (ca. 21 550 cm-1) being completely quenched at room temperature. At lower temperatures higher-lying levels are not so efficiently quenched. The broad band observed in the UV excitation spectra of Eu3+ and Tb3+ is easily assigned to an intra-ligand transition leading to ligand-to-lanthanide ion energy transfer processes. As observed for Tb3+, Eu3+ dilution in Gd3+ or La3+ hosts also increases the relative emission intensity mediated by the ligand, without variation in the 5D0 excited-state lifetime. The Eu3+ 5D0 excitation spectra show vibronic structures that can be interpreted on the basis of the data available from the vibrational spectra. An increase in the vibronic intensities is observed as the lanthanide concentration is increased. © 1994.
Resumo:
The A2∑+ and Z2∏ electronic states of the SiP species have been investigated theoretically at a very high level of correlation treatment (CASSCF/MRSDCI). Very accurate potential energy curves are presented for both states, as well as the associated spectroscopic constants as derived from the vib-rotational energy levels determined by means of the numerical solution of the radial Schrödinger equation. Electronic transition moment function, oscillator strengths, Einstein coefficients for spontaneous emission, and Franck-Condon factors for the A2∑+-X2∏ system have been calculated. Dipole moment functions and radiative lifetimes for both states have also been determined. Spin-orbit coupling constants are also reported. The radiative lifetimes for the A2∑+ state, taking into account the spin-orbit diagonal correction to the X2∏ state, decrease from a value of 138 ms at v′ = 0 to 0.48 ms at v′ = 8, and, for the X2∏ state, from 2.32 s at v″ = 1 to 0.59 s at v″ = 5. Vibrational and rotational transitions are expected to be relatively strong.
Resumo:
The dependence of the optical absorption edge on the deposition crucible temperature is used to investigate the electronic states in As-rich a-GaAs flash evaporated films. The Urbach energy parameter, determined from photothermal deflection spectroscopy (PDS), presents large correlated variations with crucible temperature. The optical and electrical results are consistent with the As under coordinated sites being the more important defect in the material. © 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Pigs are quite sensitive to high environmental temperatures and the thermoregulation mechanisms represent great expenses in energy for heating loss, reducing animal well-being and production performance, and altering carcass quality. The aim of this study was to assess the effects of sex and dietary energy level in growing-finishing pigs submitted to characteristic seasonal variation of temperature in subtropical humid climate, and to propose a mathematical model to predict growth performance and carcass characteristics. Twenty-eight crossbred growing-finishing pigs were randomly allotted to twelve treatments, in a 2x2x3 factorial trial (2 sex; 2 environmental conditions, and 3 energy levels). Heat stress condition (climatic chamber) showed temperatures of 31 oC at 7:00 and 22 oC at 17:00 (maximum of 33 °C) and thermal comfort condition (stall) showed temperatures of 18 °C at 7:00 and 24 °C (maximum of 27 °C). Pigs were fed ad libitum with diets containing 12.2 (low), 13.6 (medium) and 15.0 (high) MJ ME/ kg DM. Voluntary feed intake, daily weight gain, and final body weight were higher (P<0.01) at thermal comfort condition and were influenced by sex (P<0.01) in growing pigs. Feed to gain ratio decreased as the energy level increased (P<0.01), with values of 2.67, 2.59, and 2.32 (12.2, 13.6, and 15.0 MJ ME/kg DM, respectively). There was energy level and sex interaction only for daily weight gain. Regarding finishing pigs, environmental conditions also showed effects (P<0.01) on voluntary feed intake, daily weight gain, and final body weight. Performance of pigs was better at thermal comfort condition. Feed to gain ratio values were 3.55, 3.42, and 2.95 for low, medium, and high energy level, respectively. Interactions between energy level and sex were observed for voluntary feed intake, daily weight gain, and final body weight (P<0.05). Carcass yield and quality were affected by environmental condition and dietary energy level. Both hot and cold carcass weight increased as energy of ration increased. Cold carcass weight increased by 1.142 kg/MJ EM whereas backfat thickness was up to 252 mm/MJ EM. Longissimus thoracis muscle thickness was around 16 mm smaller in pigs under heat stress, but lean content was 2.68% higher in those animals. Regression equations were proposed to predict the performance values in the different situations studied.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
It is a well-established fact that statistical properties of energy-level spectra are the most efficient tool to characterize nonintegrable quantum systems. The statistical behavior of different systems such as complex atoms, atomic nuclei, two-dimensional Hamiltonians, quantum billiards, and noninteracting many bosons has been studied. The study of statistical properties and spectral fluctuations in interacting many-boson systems has developed interest in this direction. We are especially interested in weakly interacting trapped bosons in the context of Bose-Einstein condensation (BEC) as the energy spectrum shows a transition from a collective nature to a single-particle nature with an increase in the number of levels. However this has received less attention as it is believed that the system may exhibit Poisson-like fluctuations due to the existence of an external harmonic trap. Here we compute numerically the energy levels of the zero-temperature many-boson systems which are weakly interacting through the van der Waals potential and are confined in the three-dimensional harmonic potential. We study the nearest-neighbor spacing distribution and the spectral rigidity by unfolding the spectrum. It is found that an increase in the number of energy levels for repulsive BEC induces a transition from a Wigner-like form displaying level repulsion to the Poisson distribution for P(s). It does not follow the Gaussian orthogonal ensemble prediction. For repulsive interaction, the lower levels are correlated and manifest level-repulsion. For intermediate levels P(s) shows mixed statistics, which clearly signifies the existence of two energy scales: external trap and interatomic interaction, whereas for very high levels the trapping potential dominates, generating a Poisson distribution. Comparison with mean-field results for lower levels are also presented. For attractive BEC near the critical point we observe the Shnirelman-like peak near s = 0, which signifies the presence of a large number of quasidegenerate states.
Resumo:
Conjugated polymers have attracted tremendous academical and industrial research interest over the past decades due to the appealing advantages that organic / polymeric materials offer for electronic applications and devices such as organic light emitting diodes (OLED), organic field effect transistors (OFET), organic solar cells (OSC), photodiodes and plastic lasers. The optimization of organic materials for applications in optoelectronic devices requires detailed knowledge of their photophysical properties, for instance energy levels of excited singlet and triplet states, excited state decay mechanisms and charge carrier mobilities. In the present work a variety of different conjugated (co)polymers, mainly polyspirobifluorene- and polyfluorene-type materials, was investigated using time-resolved photoluminescence spectroscopy in the picosecond to second time domain to study their elementary photophysical properties and to get a deeper insight into structure-property relationships. The experiments cover fluorescence spectroscopy using Streak Camera techniques as well as time-delayed gated detection techniques for the investigation of delayed fluorescence and phosphorescence. All measurements were performed on the solid state, i.e. thin polymer films and on diluted solutions. Starting from the elementary photophysical properties of conjugated polymers the experiments were extended to studies of singlet and triplet energy transfer processes in polymer blends, polymer-triplet emitter blends and copolymers. The phenomenon of photonenergy upconversion was investigated in blue light-emitting polymer matrices doped with metallated porphyrin derivatives supposing an bimolecular annihilation upconversion mechanism which could be experimentally verified on a series of copolymers. This mechanism allows for more efficient photonenergy upconversion than previously reported for polyfluorene derivatives. In addition to the above described spectroscopical experiments, amplified spontaneous emission (ASE) in thin film polymer waveguides was studied employing a fully-arylated poly(indenofluorene) as the gain medium. It was found that the material exhibits a very low threshold value for amplification of blue light combined with an excellent oxidative stability, which makes it interesting as active material for organic solid state lasers. Apart from spectroscopical experiments, transient photocurrent measurements on conjugated polymers were performed as well to elucidate the charge carrier mobility in the solid state, which is an important material parameter for device applications. A modified time-of-flight (TOF) technique using a charge carrier generation layer allowed to study hole transport in a series of spirobifluorene copolymers to unravel the structure-mobility relationship by comparison with the homopolymer. Not only the charge carrier mobility could be determined for the series of polymers but also field- and temperature-dependent measurements analyzed in the framework of the Gaussian disorder model showed that results coincide very well with the predictions of the model. Thus, the validity of the disorder concept for charge carrier transport in amorphous glassy materials could be verified for the investigated series of copolymers.