993 resultados para Binary image
Resumo:
We have developed digital image registration program for a MC 68000 based fundus image processing system (FIPS). FIPS not only is capable of executing typical image processing algorithms in spatial as well as Fourier domain, the execution time for many operations has been made much quicker by using a hybrid of "C", Fortran and MC6000 assembly languages.
Resumo:
This paper describes the feasibility of the application of an Imputer in a multiple choice answer sheet marking system based on image processing techniques.
Resumo:
In this paper, we seek to expand the use of direct methods in real-time applications by proposing a vision-based strategy for pose estimation of aerial vehicles. The vast majority of approaches make use of features to estimate motion. Conversely, the strategy we propose is based on a MR (Multi- Resolution) implementation of an image registration technique (Inverse Compositional Image Alignment ICIA) using direct methods. An on-board camera in a downwards-looking configuration, and the assumption of planar scenes, are the bases of the algorithm. The motion between frames (rotation and translation) is recovered by decomposing the frame-to-frame homography obtained by the ICIA algorithm applied to a patch that covers around the 80% of the image. When the visual estimation is required (e.g. GPS drop-out), this motion is integrated with the previous known estimation of the vehicles’ state, obtained from the on-board sensors (GPS/IMU), and the subsequent estimations are based only on the vision-based motion estimations. The proposed strategy is tested with real flight data in representative stages of a flight: cruise, landing, and take-off, being two of those stages considered critical: take-off and landing. The performance of the pose estimation strategy is analyzed by comparing it with the GPS/IMU estimations. Results show correlation between the visual estimation obtained with the MR-ICIA and the GPS/IMU data, that demonstrate that the visual estimation can be used to provide a good approximation of the vehicle’s state when it is required (e.g. GPS drop-outs). In terms of performance, the proposed strategy is able to maintain an estimation of the vehicle’s state for more than one minute, at real-time frame rates based, only on visual information.
Resumo:
This paper presents a key based generic model for digital image watermarking. The model aims at addressing an identified gap in the literature by providing a basis for assessing different watermarking requirements in various digital image applications. We start with a formulation of a basic watermarking system, and define system inputs and outputs. We then proceed to incorporate the use of keys in the design of various system components. Using the model, we also define a few fundamental design and evaluation parameters. To demonstrate the significance of the proposed model, we provide an example of how it can be applied to formally define common attacks.
Resumo:
Approximately 20 years have passed now since the NTSB issued its original recommendation to expedite development, certification and production of low-cost proximity warning and conflict detection systems for general aviation [1]. While some systems are in place (TCAS [2]), ¡¨see-and-avoid¡¨ remains the primary means of separation between light aircrafts sharing the national airspace. The requirement for a collision avoidance or sense-and-avoid capability onboard unmanned aircraft has been identified by leading government, industry and regulatory bodies as one of the most significant challenges facing the routine operation of unmanned aerial systems (UAS) in the national airspace system (NAS) [3, 4]. In this thesis, we propose and develop a novel image-based collision avoidance system to detect and avoid an upcoming conflict scenario (with an intruder) without first estimating or filtering range. The proposed collision avoidance system (CAS) uses relative bearing ƒÛ and angular-area subtended ƒê , estimated from an image, to form a test statistic AS C . This test statistic is used in a thresholding technique to decide if a conflict scenario is imminent. If deemed necessary, the system will command the aircraft to perform a manoeuvre based on ƒÛ and constrained by the CAS sensor field-of-view. Through the use of a simulation environment where the UAS is mathematically modelled and a flight controller developed, we show that using Monte Carlo simulations a probability of a Mid Air Collision (MAC) MAC RR or a Near Mid Air Collision (NMAC) RiskRatio can be estimated. We also show the performance gain this system has over a simplified version (bearings-only ƒÛ ). This performance gain is demonstrated in the form of a standard operating characteristic curve. Finally, it is shown that the proposed CAS performs at a level comparable to current manned aviations equivalent level of safety (ELOS) expectations for Class E airspace. In some cases, the CAS may be oversensitive in manoeuvring the owncraft when not necessary, but this constitutes a more conservative and therefore safer, flying procedures in most instances.
Resumo:
An automatic approach to road lane marking extraction from high-resolution aerial images is proposed, which can automatically detect the road surfaces in rural areas based on hierarchical image analysis. The procedure is facilitated by the road centrelines obtained from low-resolution images. The lane markings are further extracted on the generated road surfaces with 2D Gabor filters. The proposed method is applied on the aerial images of the Bruce Highway around Gympie, Queensland. Evaluation of the generated road surfaces and lane markings using four representative test fields has validated the proposed method.
Resumo:
Signal-degrading speckle is one factor that can reduce the quality of optical coherence tomography images. We demonstrate the use of a hierarchical model-based motion estimation processing scheme based on an affine-motion model to reduce speckle in optical coherence tomography imaging, by image registration and the averaging of multiple B-scans. The proposed technique is evaluated against other methods available in the literature. The results from a set of retinal images show the benefit of the proposed technique, which provides an improvement in signal-to-noise ratio of the square root of the number of averaged images, leading to clearer visual information in the averaged image. The benefits of the proposed technique are also explored in the case of ocular anterior segment imaging.
Resumo:
In Chapter 10, Adam and Dougherty describe the application of medical image processing to the assessment and treatment of spinal deformity, with a focus on the surgical treatment of idiopathic scoliosis. The natural history of spinal deformity and current approaches to surgical and non-surgical treatment are briefly described, followed by an overview of current clinically used imaging modalities. The key metrics currently used to assess the severity and progression of spinal deformities from medical images are presented, followed by a discussion of the errors and uncertainties involved in manual measurements. This provides the context for an analysis of automated and semi-automated image processing approaches to measure spinal curve shape and severity in two and three dimensions.
Resumo:
True stress-strain curve of railhead steel is required to investigate the behaviour of railhead under wheel loading through elasto-plastic Finite Element (FE) analysis. To reduce the rate of wear, the railhead material is hardened through annealing and quenching. The Australian standard rail sections are not fully hardened and hence suffer from non-uniform distribution of the material property; usage of average properties in the FE modelling can potentially induce error in the predicted plastic strains. Coupons obtained at varying depths of the railhead were, therefore, tested under axial tension and the strains were measured using strain gauges as well as an image analysis technique, known as the Particle Image Velocimetry (PIV). The head hardened steel exhibit existence of three distinct zones of yield strength; the yield strength as the ratio of the average yield strength provided in the standard (σyr=780MPa) and the corresponding depth as the ratio of the head hardened zone along the axis of symmetry are as follows: (1.17 σyr, 20%), (1.06 σyr, 20%- 80%) and (0.71 σyr, > 80%). The stress-strain curves exhibit limited plastic zone with fracture occurring at strain less than 0.1.
Resumo:
Many user studies in Web information searching have found the significant effect of task types on search strategies. However, little attention was given to Web image searching strategies, especially the query reformulation activity despite that this is a crucial part in Web image searching. In this study, we investigated the effects of topic domains and task types on user’s image searching behavior and query reformulation strategies. Some significant differences in user’s tasks specificity and initial concepts were identified among the task domains. Task types are also found to influence participant’s result reviewing behavior and query reformulation strategies.
Resumo:
In most of the digital image watermarking schemes, it becomes a common practice to address security in terms of robustness, which is basically a norm in cryptography. Such consideration in developing and evaluation of a watermarking scheme may severely affect the performance and render the scheme ultimately unusable. This paper provides an explicit theoretical analysis towards watermarking security and robustness in figuring out the exact problem status from the literature. With the necessary hypotheses and analyses from technical perspective, we demonstrate the fundamental realization of the problem. Finally, some necessary recommendations are made for complete assessment of watermarking security and robustness.
Resumo:
We address the problem of face recognition on video by employing the recently proposed probabilistic linear discrimi-nant analysis (PLDA). The PLDA has been shown to be robust against pose and expression in image-based face recognition. In this research, the method is extended and applied to video where image set to image set matching is performed. We investigate two approaches of computing similarities between image sets using the PLDA: the closest pair approach and the holistic sets approach. To better model face appearances in video, we also propose the heteroscedastic version of the PLDA which learns the within-class covariance of each individual separately. Our experi-ments on the VidTIMIT and Honda datasets show that the combination of the heteroscedastic PLDA and the closest pair approach achieves the best performance.
Resumo:
While researchers strive to improve automatic face recognition performance, the relationship between image resolution and face recognition performance has not received much attention. This relationship is examined systematically and a framework is developed such that results from super-resolution techniques can be compared. Three super-resolution techniques are compared with the Eigenface and Elastic Bunch Graph Matching face recognition engines. Parameter ranges over which these techniques provide better recognition performance than interpolated images is determined.
Resumo:
The Agrobacterium-mediated transformation system was extended to two indica cultivars: a widely cultivated breeding line IR-64 and an elite basmati cultivar Karnal Local. Root tips and shoot tips of seedlings, and scutellar-calli derived from mature seeds showed high-efficiency Agrobacterium tumefaciens infection and stable transformation. In addition to the superbinary vector pTOK233 in Agrobacterium strain LBA4404, almost equally high levels of transformation were achieved with a relatively much smaller (13.1 kb) binary vector (pCAMBIA1301) in a supervirulent host strain AGL1. In both cases, as well as in both cultivars, while 60–90% of the infected explants produced calli resistant to the selectable agent hygromycin, 59–75% of such calli tested positive for GUS. A high level (400 μM) of acetosyringone in the preinduction medium for Agrobacterium and a higher level (500 μM) in the cocultivation medium was necessary for an enhancement in transformation frequency of the binary vector to levels comparable to a superbinary. Hygromycin-resistant calli could be produced from all the explants used. Transformants could be regenerated for both cultivars using the superbinary and binary vector, but only for calli of scutellar origin. In addition to the molecular confirmation of hpt and gus gene transfer and transcription, absence of gene sequences outside the transferred DNA (T-DNA) region confirmed absence of any long T-DNA transfer.
Resumo:
Affine covariant local image features are a powerful tool for many applications, including matching and calibrating wide baseline images. Local feature extractors that use a saliency map to locate features require adaptation processes in order to extract affine covariant features. The most effective extractors make use of the second moment matrix (SMM) to iteratively estimate the affine shape of local image regions. This paper shows that the Hessian matrix can be used to estimate local affine shape in a similar fashion to the SMM. The Hessian matrix requires significantly less computation effort than the SMM, allowing more efficient affine adaptation. Experimental results indicate that using the Hessian matrix in conjunction with a feature extractor that selects features in regions with high second order gradients delivers equivalent quality correspondences in less than 17% of the processing time, compared to the same extractor using the SMM.