964 resultados para Binary Image Representation
Resumo:
The goal of image retrieval and matching is to find and locate object instances in images from a large-scale image database. While visual features are abundant, how to combine them to improve performance by individual features remains a challenging task. In this work, we focus on leveraging multiple features for accurate and efficient image retrieval and matching. We first propose two graph-based approaches to rerank initially retrieved images for generic image retrieval. In the graph, vertices are images while edges are similarities between image pairs. Our first approach employs a mixture Markov model based on a random walk model on multiple graphs to fuse graphs. We introduce a probabilistic model to compute the importance of each feature for graph fusion under a naive Bayesian formulation, which requires statistics of similarities from a manually labeled dataset containing irrelevant images. To reduce human labeling, we further propose a fully unsupervised reranking algorithm based on a submodular objective function that can be efficiently optimized by greedy algorithm. By maximizing an information gain term over the graph, our submodular function favors a subset of database images that are similar to query images and resemble each other. The function also exploits the rank relationships of images from multiple ranked lists obtained by different features. We then study a more well-defined application, person re-identification, where the database contains labeled images of human bodies captured by multiple cameras. Re-identifications from multiple cameras are regarded as related tasks to exploit shared information. We apply a novel multi-task learning algorithm using both low level features and attributes. A low rank attribute embedding is joint learned within the multi-task learning formulation to embed original binary attributes to a continuous attribute space, where incorrect and incomplete attributes are rectified and recovered. To locate objects in images, we design an object detector based on object proposals and deep convolutional neural networks (CNN) in view of the emergence of deep networks. We improve a Fast RCNN framework and investigate two new strategies to detect objects accurately and efficiently: scale-dependent pooling (SDP) and cascaded rejection classifiers (CRC). The SDP improves detection accuracy by exploiting appropriate convolutional features depending on the scale of input object proposals. The CRC effectively utilizes convolutional features and greatly eliminates negative proposals in a cascaded manner, while maintaining a high recall for true objects. The two strategies together improve the detection accuracy and reduce the computational cost.
Resumo:
Today's man is socially absorbed by problematic body issues and everything that this means and involves. Literature, publicity, science, technology and medicine compound these issues in a form of this theme that has never been seen before. In the artistic framework, body image is constantly suffering modifications. Body image in sculpture unfolds itself, assuming different messages and different forms. The body is a synonym of subject, an infinite metaphorical history of our looks, desires, that leads one to interrogate his/her image and social and sexual relations. These are understood as a manifestation of individual desires freed from a moral and social imposition. It attempts a return to profound human nature before we are turned into a cloning industry. In thisstudy it isimportant for usto understand in which form doessculpture reflect body image as a sociocultural and psychological phenomenon within the coordinates of our time. To understand how they represent and what artists represent in sculpture as a multiple and complex structure of human sexuality. Today, the sculptural body, expanding its representation, no longer as a reproduction of the corporal characteristics, presents the body in what it possesses of most intimate, unique, human and real, that moves, reacts, feels, suffers and pulsates, a mirror of us all.
Resumo:
Both ludic and macabre, the theatrical works of Samuel Beckett and Jean Genet are a paradox to behold. Indeed, as this thesis seeks to illustrate, despite their vastly differing aesthetics, at the core of each playwright’s stage productions is a tension between the characters’ yearning for silence and invisibility, and the continual creation of an often humorous, chaotic, exaggerated or theatrical image that depicts this very longing. Seeking an impossible intersection between their image and their death, they are trapped in a double bind that guarantees aesthetic failure. In order to grasp the close, yet delicate, relationship between the image of death and the death of the image, as presented in the plays of Beckett and Genet, we will explore how the characters’ creative processes deflate the very images — both visual and auditory — that they create. More specifically, we will examine how mimesis both liberates and confines the characters; while the symbolic realm provides the only means of self-representation, it is also a source of profound alienation and powerlessness, for it never adequately conveys meaning. Thus, body, gesture, language and voice are each the site of simultaneous and ceaseless reappearance and disappearance, for which death remains the only (aporetic) cure. Struggling against theatrical form, which demands the actors’ and the audience’s physical presence, both playwrights make shrewd use of metatheatre to slowly empty the stage and thereby suggest the impending, yet impossible, erasure of their characters.
Resumo:
Conceptual interpretation of languages has gathered peak interest in the world of artificial intelligence. The challenge in modeling various complications involved in a language is the main motivation behind our work. Our main focus in this work is to develop conceptual graphical representation for image captions. We have used discourse representation structure to gain semantic information which is further modeled into a graphical structure. The effectiveness of the model is evaluated by a caption based image retrieval system. The image retrieval is performed by computing subgraph based similarity measures. Best retrievals were given an average rating of . ± . out of 4 by a group of 25 human judges. The experiments were performed on a subset of the SBU Captioned Photo Dataset. This purpose of this work is to establish the cognitive sensibility of the approach to caption representations
Resumo:
Conceptual interpretation of languages has gathered peak interest in the world of artificial intelligence. The challenge in modeling various complications involved in a language is the main motivation behind our work. Our main focus in this work is to develop conceptual graphical representation for image captions. We have used discourse representation structure to gain semantic information which is further modeled into a graphical structure. The effectiveness of the model is evaluated by a caption based image retrieval system. The image retrieval is performed by computing subgraph based similarity measures. Best retrievals were given an average rating of . ± . out of 4 by a group of 25 human judges. The experiments were performed on a subset of the SBU Captioned Photo Dataset. This purpose of this work is to establish the cognitive sensibility of the approach to caption representations.
Resumo:
Diabetic Retinopathy (DR) is a complication of diabetes that can lead to blindness if not readily discovered. Automated screening algorithms have the potential to improve identification of patients who need further medical attention. However, the identification of lesions must be accurate to be useful for clinical application. The bag-of-visual-words (BoVW) algorithm employs a maximum-margin classifier in a flexible framework that is able to detect the most common DR-related lesions such as microaneurysms, cotton-wool spots and hard exudates. BoVW allows to bypass the need for pre- and post-processing of the retinographic images, as well as the need of specific ad hoc techniques for identification of each type of lesion. An extensive evaluation of the BoVW model, using three large retinograph datasets (DR1, DR2 and Messidor) with different resolution and collected by different healthcare personnel, was performed. The results demonstrate that the BoVW classification approach can identify different lesions within an image without having to utilize different algorithms for each lesion reducing processing time and providing a more flexible diagnostic system. Our BoVW scheme is based on sparse low-level feature detection with a Speeded-Up Robust Features (SURF) local descriptor, and mid-level features based on semi-soft coding with max pooling. The best BoVW representation for retinal image classification was an area under the receiver operating characteristic curve (AUC-ROC) of 97.8% (exudates) and 93.5% (red lesions), applying a cross-dataset validation protocol. To assess the accuracy for detecting cases that require referral within one year, the sparse extraction technique associated with semi-soft coding and max pooling obtained an AUC of 94.2 ± 2.0%, outperforming current methods. Those results indicate that, for retinal image classification tasks in clinical practice, BoVW is equal and, in some instances, surpasses results obtained using dense detection (widely believed to be the best choice in many vision problems) for the low-level descriptors.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
PURPOSE: Juvenile idiopathic arthritis (JIA) has unknown etiology, and the involvement of the temporomandibular joint (TMJ) is rare in the early phase of the disease. The present article describes the use of computed tomography (CT) and magnetic resonance (MRI) images for the diagnosis of affected TMJ in JIA. CASE DESCRIPTION: A 12-year-old, female, Caucasian patient, with systemic rheumathoid arthritis and involvement of multiple joints was referred to the Imaging Center for TMJ assessment. The patient reported TMJ pain and limited opening of the mouth. The helical CT examination of the TMJ region showed asymmetric mandibular condyles, erosion of the right condyle and osteophyte-like formation. The MRI examination showed erosion of the right mandibular condyle, osteophytes, displacement without reduction and disruption of the articular disc. CONCLUSION: The disorders of the TMJ as a consequence of JIA must be carefully assessed by modern imaging methods such as CT and MRI. CT is very useful for the evaluation of discrete bone changes, which are not identified by conventional radiographs in the early phase of JIA. MRI allows the evaluation of soft tissues, the identification of acute articular inflammation and the differentiation between pannus and synovial hypertrophy.
Resumo:
This paper deals with the emission of gravitational radiation in the context of a previously studied metric nonsymmetric theory of gravitation. The part coming from the symmetric part of the metric coincides with the mass quadrupole moment result of general relativity. The one associated to the antisymmetric part of the metric involves the dipole moment of the fermionic charge of the system. The results are applied to binary star systems and the decrease of the period of the elliptical motion is calculated.
Resumo:
A phase shift proximity printing lithographic mask is designed, manufactured and tested. Its design is based on a Fresnel computer-generated hologram, employing the scalar diffraction theory. The obtained amplitude and phase distributions were mapped into discrete levels. In addition, a coding scheme using sub-cells structure was employed in order to increase the number of discrete levels, thus increasing the degree of freedom in the resulting mask. The mask is fabricated on a fused silica substrate and an amorphous hydrogenated carbon (a:C-H) thin film which act as amplitude modulation agent. The lithographic image is projected onto a resist coated silicon wafer, placed at a distance of 50 mu m behind the mask. The results show a improvement of the achieved resolution - linewidth as good as 1.5 mu m - what is impossible to obtain with traditional binary masks in proximity printing mode. Such achieved dimensions can be used in the fabrication of MEMS and MOEMS devices. These results are obtained with a UV laser but also with a small arc lamp light source exploring the partial coherence of this source. (C) 2010 Optical Society of America
Resumo:
Background: The present work aims at the application of the decision theory to radiological image quality control ( QC) in diagnostic routine. The main problem addressed in the framework of decision theory is to accept or reject a film lot of a radiology service. The probability of each decision of a determined set of variables was obtained from the selected films. Methods: Based on a radiology service routine a decision probability function was determined for each considered group of combination characteristics. These characteristics were related to the film quality control. These parameters were also framed in a set of 8 possibilities, resulting in 256 possible decision rules. In order to determine a general utility application function to access the decision risk, we have used a simple unique parameter called r. The payoffs chosen were: diagnostic's result (correct/incorrect), cost (high/low), and patient satisfaction (yes/no) resulting in eight possible combinations. Results: Depending on the value of r, more or less risk will occur related to the decision-making. The utility function was evaluated in order to determine the probability of a decision. The decision was made with patients or administrators' opinions from a radiology service center. Conclusion: The model is a formal quantitative approach to make a decision related to the medical imaging quality, providing an instrument to discriminate what is really necessary to accept or reject a film or a film lot. The method presented herein can help to access the risk level of an incorrect radiological diagnosis decision.